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BACKGROUND

o Image recognition
+ Assignment of a label to a given input image
e Biometrics, OCR, video recognition, etc.
¢ Increase in demand in various fields
e Security, industrial inspection, entertainment, etc.
o Approach to geometric variation in image recognition

¢ Heuristic normalization techniques

e Development of task-dependent techniques require high cost
¢ Local features (HOG, SIFT, etc.)

e Global information can’t use
¢ Classifiers

e Subspace method : corresponding to only pattern variation
e Characteristic of geometric variation is not considered

Focus on techniques for modeling geometric variations explicitly




INTRODUCTION

o Hidden Markov eigen-image models (HMEMSs) [Nankaku,

+ Probabilistic PCA and factor analysis ) et al.; '06]
e Linear feature extraction ' Integrating

¢ Separable lattice HMMs [Kurata, et al.; '06] two models
e Invariance size and location )

¢ Over-fitting problem because of complex model structures
o Training criterion of probabilistic models

¢ Maximum likelihood (ML) criterion
e ML criterion produces point estimation of model parameters
= Over-fitting problem when amount of data is insufficient
+ Bayesian criterion
e Estimation of posterior distributions using prior information
= High generalization ability

Apply Bayesian criterion to HMEMSs




OUTLINE

o Models

+ Probabilistic eigen-image models (PEMSs)
¢ Separable lattice hidden Markov models (SL-HMMs)
+ Hidden Markov eigen-image models (HMEMS)



PROBABILISTIC EIGEN-IMAGE MODELS (PEMS)

0 Eigen-images are represented by probabilistic models
+ Probabilistic principal component analysis (PPCA)
¢ Factor analysis (FA)
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PROBABILISTIC EIGEN-IMAGE MODELS (PEMS)

0 Eigen-images are represented by probabilistic models
+ Probabilistic principal component analysis (PPCA)
¢ Factor analysis (FA)
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Linear feature extraction based on statistical analysis
Image normalization is required as pre-processing



SEPARABLE LATTICE HMMS (SL-HMMS)

o SL-HMMs have horizontal and vertical Markov chains
+ State sequences of horizontal and vertical are independent

Horizontal state sequence z(l)

Each pixel is
emitted from a

N

Vertical state sequence 2(2)

corresponding A
output PDF JAN VAN AN
| AR JANPANZAN
Images are divided into Output PDFs

rectangular regions in the state

Include size-and-location-normalization
Independence assumption of observations
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HIDDEN MARKOV EIGEN-IMAGE MODELS (HMEMS)

" o Integration of PEMs and SL-HMMs
o Eigen-images and noise are generated from SL-HMMs
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OUTLINE

o Training criterion
¢ Maximum likelihood (ML) criterion

¢ Bayesian criterion
e HEMESs using variational Bayesian (VB) method (proposed)



MAXIMUM LIKELIHOOD (ML) CRITERION

o Optimal model parameters A, are estimated by

maximizing the likelihood
Training data O — AmL = aI‘ngXP(O‘A)
v
Testdata Y  [—{Predictive dist. P(Y | Ay,)
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) Estimation accuracy is decreased by over-fitting problem




BAYESIAN CRITERION

o Estimation of posterior distribution

Prior information —>{ Prior dist. P(A)

v

O|A)P(A)

P
Training data () —| Posterior dist. P(A |O) = ( P(O)

v

Testdata Y (— (Fj’irsef‘“‘tive P(Y|O) = / P(Y |A)P(A|O)dA




BAYESIAN CRITERION

o Estimation of posterior distribution

Prior information ——{ Prior dist. P(A)
Large amount '

of face images




BAYESIAN CRITERION

o Estimation of posterior distribution

Prior information | Prior dist. P(A)

v

P AP(A
Training data () —| Posterior dist. P(A |O) = (O]L(())) (A)

Face images

of one subject




BAYESIAN CRITERION

o Estimation of posterior distribution

Prior information —>{ Prior dist. P(A)
v
. o P(OA)P(A)
Training data () [—| Posterior dist. P(A |O) =
P(O)
v
Testdata Y (— (Fj’irsetd‘“‘tive P(Y|O) = / P(Y |A)P(A|O)dA

Using prior dist. and marginalization of model parameters
Complicated integral and
expectation computations



BAYESIAN CRITERION

o Estimation of posterior distribution
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BAYESIAN CRITERION

o Estimation of posterior distribution

Prior information —{ Prior dist. P(A)
v
Training data () [—| Posterior dist. P(A |O) = POJA)P(A)
P(O)
v
Testdata Y [—{ 70 P(Y|0) = / P(Y |A)P(A]|O)dA

Using prior dist. and marginalization of model parameters

S:rggi':ﬁéidcg‘;?gsf;tfgfs = - MCMC method [Gilks, et al.; '96]
P P - MAP method [Gauvain, et al.; '94]
- VB method [Attias; '99]



VARIATIONAL BAYESIAN (VB) METHOD (1/2)

0 Estimation of approximated posterior dist.
o Define a lower bound F(Q) of log marginal likelihood

(1) »(2) A
In P(O) > E E //Q x, 2\ ,A)In Q(w,z(l),z(Q),A) dxdA

z(1) z(2)

X : Factor vector z‘"/: Horizontal state sequence
Q(x, 2 ) z(?) , A) : Arbitrary dist. z(2) Vertical state sequence

o KLD between arbitrary dist. @ and true posterior dist. P

KLQIIP)=nP(O) - FQ) —— i P(O)

¢ Maximizing lower bound F(Q)
& Minimizing KLD F(Q)
¢ Arbitrary dist. Q) represents

approximated posterior dist. > @



VARIATIONAL BAYESIAN (VB) METHOD (2/2)

" 0 Assume the independency of random variables

P(xz, 2,

2P A|0) = Q(z, 21, 2 A)
= Q(z)Q(z")Q(z*)Q(A)

Q(x, zM, 2 A): Arbitrary dist. Q(-) : VB posterior dist.

o Updates of VB posterior dist. increase the value of

ower bound F(Q) at each iteration until convergence

Q(zY) = arg max F
5 (4(2) Q(zM)

VB E-step ?( ) = arg Qrf%)F K&gﬁﬁ
Q(x) = arg gl(i))c]-"

VB M-step Q(A) = arg m&’;‘]:

)

In P(O)

Apply VB method to HMEMs




OUTLINE

O Experiments
¢ Face recognition experiments
¢ Conclusion & future work



FACE RECOGNITION EXPERIMENTS

0 Experimental conditions

Database XM2VTS

Image size 64 x 64 pixel, Gray-scale
Training data 6 images per subject x 100 subjects

Test data 2 images per subject x 100 subjects

Model structure SL-HMM, HMEM-PPCA, HMEM-FA

Number of states 32 x 32 states

ML method (ML criterion),

Estimate method VB method (Baysian criterion)

Uniform distribution (flat),

Prior distribution Universal background model (UBM)




RECOGNITION RATES (COMPARING ML AND VB)

Recognition rate (%)

Comparing ML and VB methods (prior dist. : uniform dist.)
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VB method achieved higher recognition rates than ML method




PRIOR DISTRIBUTION

o Prior dist. affects the estimation of posterior dist.
¢ Uniform distribution (flat)
¢ Universal background model (UBM)

flat

SLUBM

UBM

Uniform dist.

Tuning the influence
of uniform dist.

Prior dist.

All training samples
of all subjects

l Training UBM

UBM (SL-HMMs)

Convert SL-HMMs
to HMEMs

UBM (HMEMSs)

Tuning the influence
of UBM

Prior dist.

All training samples
of all subjects

Training UBM

A 4

UBM (HMEMSs)

Tuning the influence
of UBM

Prior dist.




RECOGNITION RATES (COMPARING PRIOR DIST.)

HMEM-PPCA HMEM-FA
84 84
82 82
X 80 = 80
S S
© /3 © /8
c c
376 - S 76
5 74 & 74
o (o]
o 72 & 72
14 14
70 70
68 68

1 2 3 4 5 1 2 3 4 5
Number of factors Number of factors
=3¥=flat
=S| _.UBM

-@-UBM



RECOGNITION RATES (COMPARING PRIOR DIST.)
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HMEM-PPCA : flat outperformed SLUBM

HMEM-FA : SLUBM outperformed flat IQTUBM

= SLUBM is effective for FA (diagonal) structure -o-UBM




RECOGNITION RATES (COMPARING PRIOR DIST.)

HMEM-PPCA HMEM-FA

(00
N
o
A

0o
N
oo
N

o

)

N N o™
o
N N o
o)

~
N

~
N

Recognition rate (%)
PN

Recognition rate (%)
PN

~
o
~
o

)]
oo
)]
(o)

1 2 3 4 S 1 2 3 4 S

L _ ar of factors
No significant difference between flat and UBM

= Prior dist. had tuned under the condition —=flat

=#=S|_ UBM
that the number of factor was one -0-UBM




RECOGNITION RATES (COMPARING PRIOR DIST.)

HMEM-PPCA HMEM-FA
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= High recognition rate can be expected =#=flat

if prior dist. can be set adequately Bl




CONCLUSION

o Focus on technique for modeling geometric variations

o Apply Bayesian criterion to HMEMSs
¢ Derive VB method for HMEMSs

+ Face recognition experiments
e HMEMs based on VB method outperformed ML method
e Recognition rate is improved by using an appropriate prior
distribution

o Future work

¢ Investigation of appropriate parameter sharing structures
of HMEMs

+ Experiments on various image recognition tasks



