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BACKGROUND	
 
¢ Image recognition 

u   Assignment of a label to a given input image 
l  Biometrics, OCR, video recognition, etc. 

u  Increase in demand in various fields  
l  Security, industrial inspection, entertainment, etc. 

¢ Approach to geometric variation in image recognition 
u  Heuristic normalization techniques 

l  Development of task-dependent techniques require high cost 
u  Local features (HOG, SIFT, etc.) 

l  Global information can’t use 
u  Classifiers 

l  Subspace method : corresponding to only pattern variation 
l  Characteristic of geometric variation is not considered  

Focus on techniques for modeling geometric variations explicitly	
 



INTRODUCTION	
 
¢ Hidden Markov eigen-image models (HMEMs) 

u  Probabilistic PCA and factor analysis 
l  Linear feature extraction 

u  Separable lattice HMMs [Kurata, et al.; ’06]  
l  Invariance size and location 

u  Over-fitting problem because of complex model structures 
¢ Training criterion of probabilistic models 

u  Maximum likelihood (ML) criterion 
l  ML criterion produces point estimation of model parameters 
   ⇒ Over-fitting problem when amount of data is insufficient 

u  Bayesian criterion 
l  Estimation of posterior distributions using prior information 
   ⇒ High generalization ability 

Apply Bayesian criterion to HMEMs	
 

Integrating  
two models 

[Nankaku,  
 et al.; ’06]	
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PROBABILISTIC EIGEN-IMAGE MODELS (PEMS)	
 
¢ Eigen-images are represented by probabilistic models 

u  Probabilistic principal component analysis (PPCA) 
u  Factor analysis (FA) 
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       Noise vector variance 
       ・Diagonal matrix  
           ⇒ FA 
       ・Isotropic matrix  
           ⇒ PPCA 
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Linear feature extraction based on statistical analysis 
Image normalization is required as pre-processing 



SEPARABLE LATTICE HMMS (SL-HMMS)	
 
¢ SL-HMMs have horizontal and vertical Markov chains 

u  State sequences of horizontal and vertical are independent 

Images are divided into  
rectangular regions in the state	
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HIDDEN MARKOV EIGEN-IMAGE MODELS (HMEMS)	
 
¢ Integration of PEMs and SL-HMMs 
¢ Eigen-images and noise are generated from SL-HMMs	
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MAXIMUM LIKELIHOOD (ML) CRITERION 	
 
¢ Optimal model parameters          are estimated by 

maximizing the likelihood 

Predictive dist.	
 P (Y |⇤ML)

Estimation accuracy is decreased by over-fitting problem 

 Training data	
 

    Test data	
 Y



BAYESIAN CRITERION	
 
¢ Estimation of posterior distribution	
 

 Training data	
 Posterior dist.	
 

Prior information	
 Prior dist.	
 

    Test data	
 Y Predictive  
dist.	
 P (Y |O) =

Z
P (Y |⇤)P (⇤ |O)d⇤



BAYESIAN CRITERION	
 
¢ Estimation of posterior distribution	
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BAYESIAN CRITERION	
 
¢ Estimation of posterior distribution	
 

 Training data	
 Posterior dist.	
 

Prior information	
 Prior dist.	
 

    Test data	
 Y Predictive  
dist.	
 P (Y |O) =

Z
P (Y |⇤)P (⇤ |O)d⇤

⇒ ・ MCMC method [Gilks, et al.; ’96] 
⇒ ・ MAP method [Gauvain, et al.; ’94] 
⇒ ・ VB method [Attias; ’99]	


Using prior dist. and marginalization of model parameters 
Complicated integral and 
expectation computations 



VARIATIONAL BAYESIAN (VB) METHOD (1/2)	
 
¢ Estimation of approximated posterior dist. 
¢ Define a lower bound         of log marginal likelihood 

 
¢ KLD between arbitrary dist.    and true posterior dist. 

u  Maximizing lower bound  
⇔ Minimizing KLD 

u  Arbitrary dist.    represents  
approximated posterior dist. 

KL(Q ||P ) = lnP (O)� F(Q)
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= F(Q)
: Horizontal state sequence	
z(1)

z(2) : Vertical state sequence	


x : Factor vector 
Q(x, z(1), z(2),⇤) : Arbitrary dist.	


Q



VARIATIONAL BAYESIAN (VB) METHOD (2/2)	
 
¢ Assume the independency of random variables 

 
¢ Updates of VB posterior dist. increase the value of 

lower bound         at each iteration until convergence 

 

F(Q)

KL(Q ||P )

Q

lnP (O)

F(Q)

KL(Q ||P )
KL(Q ||P )KL(Q ||P )KL(Q ||P )

P (x, z(1), z(2),⇤ |O) ⇡ Q(x, z(1), z(2),⇤)

= Q(x)Q(z(1))Q(z(2))Q(⇤)

VB E-step 	


VB M-step 	


¯Q(z(1)
) = arg max

Q(z(1))
F

¯Q(z(2)
) = arg max

Q(z(2))
F

¯Q(x) = argmax

Q(x)
F

¯Q(⇤) = argmax

Q(⇤)
F

: Arbitrary dist.	
Q(x, z(1), z(2),⇤) : VB posterior dist.	


Apply VB method to HMEMs	
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FACE RECOGNITION EXPERIMENTS	
 

Database	
 XM2VTS	
 

Image size	
 64 × 64 pixel，Gray-scale	
 

Training data	
 6 images per subject × 100 subjects 

Test data	
 2 images per subject × 100 subjects 

Model structure	
 SL-HMM, HMEM-PPCA, HMEM-FA	
 

Number of states	
 32 × 32 states	
 

Estimate method	
 ML method (ML criterion)， 
VB method (Baysian criterion)	
 

Prior distribution	
 Uniform distribution (flat)， 
Universal background model (UBM)	
 

¢ Experimental conditions	
 



RECOGNITION RATES (COMPARING ML AND VB)	
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VB method achieved higher recognition rates than ML method 

Comparing ML and VB methods (prior dist. : uniform dist.)	
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PRIOR DISTRIBUTION	
 
¢ Prior dist. affects the estimation of posterior dist. 

u  Uniform distribution (flat) 
u  Universal background model (UBM)	
 

flat	
 SLUBM	
 UBM	
 

Uniform dist.	
 

Prior dist.	
 

Tuning the influence 
of uniform dist.  

All training samples 
of all subjects	
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Prior dist.	
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Training UBM	
 

Convert SL-HMMs 
to HMEMs	
 



RECOGNITION RATES (COMPARING PRIOR DIST.)	
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HMEM-PPCA : flat outperformed SLUBM 
HMEM-FA : SLUBM outperformed flat 
⇒ SLUBM is effective for FA (diagonal) structure	
 



RECOGNITION RATES (COMPARING PRIOR DIST.)	
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No significant difference between flat and UBM 
⇒ Prior dist. had tuned under the condition  
⇒ that the number of factor was one	
 



RECOGNITION RATES (COMPARING PRIOR DIST.)	
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Significant high recognition rate 
⇒ High recognition rate can be expected  
⇒ if prior dist. can be set adequately	
 



CONCLUSION	
 

¢ Focus on technique for modeling geometric variations	
 
¢ Apply Bayesian criterion to HMEMs 

u  Derive VB method for HMEMs 
u  Face recognition experiments 

l  HMEMs based on VB method outperformed ML method 
l  Recognition rate is improved by using an appropriate prior 

distribution 

¢ Future work 
u  Investigation of appropriate parameter sharing structures 

of HMEMs 
u  Experiments on various image recognition tasks 


