The Blizzard Machine Learning Challenge 2017

Kei Sawada¹, Keiichi Tokuda¹, Simon King², Alan W Black³

¹Nagoya Institute of Technology, ²University of Edinburgh, ³Carnegie Mellon University

https://synsig.org/index.php/Blizzard_Challenge_2017

ASRU 2017 on December 18, 2017

Introduction

Text-to-speech (TTS) system

- Technique for generating for artificial speech given input text
- Evaluation of methods for TTS systems
 - Comparisons are difficult when the training corpus, task, and listening test are different

Blizzard Challenge [Black & Tokuda; '05]

- Better understand and compare research techniques in building corpus-based TTS systems with the same data
- A lot of time has to be spent on speech-specific tasks
 - ⇒ Not attractive to machine learning researchers

Blizzard Machine Learning Challenge

Focus on machine learning problems for speech synthesis

History of TTS system

Statistical speech synthesis

Statistical speech synthesis

 Mapping to speech waveform from text on the basis of a statistical model

HMM-based speech synthesis ('95~)

- Context-dependent subword HMMs
- Regression trees to cluster and tie HMM states

DNN-based speech synthesis ('13~)

Replace regression trees with DNN

More recent DNN-based speech synthesis ('16~)

- Integration of vocoder and acoustic modeling
 - WaveNet, SampleRNN, etc.
- Integration of text analyzer and acoustic modeling
 - Seq2seq model, Char2Wav, Tacotron, etc.

Blizzard Challenge

Evaluations of TTS systems

 Comparisons are difficult when the training corpus, task, and listening test are different

Blizzard Challenge [Black, Tokuda, King, et al.]

- Goal
 - Better understand and compare research techniques in building corpusbased TTS systems
 - Evaluation campaign rather than competition
 ⇒ Purpose of the challenge is to share knowledge
- Method
 - Participants build voices on a common dataset
 - Organizers evaluate them in a single listening test
- Annual Blizzard Challenge 2005-2017
 - Need of construct all components for a complete TTS system
 - A lot of time has to be spent on speech-specific tasks
 - ⇒ Not attractive to machine learning researchers

Blizzard Machine Learning Challenge 2017

Blizzard Machine Learning Challenge

- Does not involve speech-specific tasks
- Allows participants to concentrate on machine learning problem

Tasks

Tasks

Processes of the organizers
Processes of the participants

o 2017-ES1

Prediction of acoustic features from linguistic features

o 2017-ES2

Prediction of speech waveforms from linguistic features

Datasets (1/2)

Data

- Commercial-quality children's audiobooks from Usborne Publishing Ltd.
- Same as the Blizzard Challenge 2016
- 5 hours of speech data

"I'm king of the jungle," roared Lion.
"I'm going to eat you all up."
"No!" cried the jungle animals.

Character1
Character2
Descriptive part

Data pruning

- Mismatches between speech waveform and text
- Excessively expressive speech data (e.g. scream, singing voice)
 - ⇒ Negative effect on acoustic model training
- Speech data including phoneme alignment errors were pruned
- 4 hours of speech data (4651 files when divided into sentences)

Datasets (2/2)

Speech waveforms (2017-ES2)

44.1kHz 16 bits monaural Waveform Audio File Format (WAVE)

Acoustic features (2017-ES1)

- 77-dimensional acoustic features
 - Log F₀ (linearly interpolated values in unvoiced parts)
 - Voiced and unvoiced information
 - 50-dimensional mel-cepstrum representing spectral envelope
 - 25-dimensional mel-cepstrum representing aperiodicity measures

Linguistic features (2017-ES1 and 2017-ES2)

- 687-dimentional linguistic features
 - Forced phoneme alignment ⇒ Frame-level linguistic features
 - Normalized to be within 0.0–1.0 based on minimum and maximum

Systems

7 teams registered and 3 teams submitted

Pairs of team ID and name are confidential

ID	Category	Task	Model	Sampling frequency	Syn. speech
Α	Natural speech	-	_	44.1kHz	
X	Benchmark	2017-ES1	FFNN	44.1kHz	
Υ	Benchmark	2017-ES1	FFNN + Trajectory training	44.1kHz	
Н	Submitted	2017-ES1	LSTM	44.1kHz	
I	Submitted	2017-ES1	LSTM + GAN postfilter	44.1kHz	
Z	Benchmark	2017-ES2	WaveNet	16kHz	
G	Submitted	2017-ES2	LSTM + WaveNet	22.05kHz	

Listening test

Design of listening test

- The evaluation combined the entries for 2017-ES1 and 2017-ES2 into a single listening test
- 50 paid native listeners

Evaluation criteria

- Naturalness
 - 5-point mean opinion score (MOS) test
 - 1: completely unnatural 5: completely natural
- Speaker similarity
 - 5-point MOS test
 - 1: sounds like a different person 5: sounds like the same person
- Intelligibility
 - Dictation test
 - Word error rate (WER)
 - Semantically unpredictable sentence (SUS)

Result (naturalness)

Result (naturalness)

Result (speaker similarity)

Mean Opinion Scores (similarity to original speaker) Paid listeners

Result (speaker similarity)

Mean Opinion Scores (similarity to original speaker) Paid listeners

Result (intelligibility)

Result (intelligibility)

Discussion and future plan

Recruit machine learning researchers

- Lack of advertisement
 - Difficult to control listening test if there are many participants
- Quality confirmation of synthesized speech
 - Release synthesized speech of benchmark system in advance
 - Release training script of benchmark system in advance
 - Release simple objective measure

End-to-end speech synthesis

- Text → Acoustic feature
- Text → Speech waveform

Conclusions

Blizzard Machine Learning Challenge 2017

- 2017-ES1
 - Prediction of acoustic features from linguistic features
- 2017-ES2
 - Prediction of speech waveform from linguistic features
- Listening test
 - Naturalness, speaker similarity, and intelligibility evaluated
- Results
 - State-of-the-art machine learning approaches achieved higher scores