The NITECH HMM-based text-to-speech system for the Blizzard Challenge 2015

Kei Sawada, Kei Hashimoto, Keiichiro Oura, and Keiichi Tokuda

Nagoya Institute of Technology (NITECH)

Blizzard Challenge 2015 workshop on Sep 11, 2015

Outline

- Background
- Blizzard Challenge 2015 tasks
- Text-to-speech system
- System overview
 - Speech recognizer (SR)
 - Word aligner (WA)
 - Grapheme-to-phoneme converter (G2P)
 - Speech synthesizer (SS)
- Experiments
- Conclusions

Background

- Text-to-speech (TTS) systems
 - System to synthesize speech for arbitrary text
 - TTS have been used widely in various applications
 - Car navigation, smart phone, spoken dialogue system, etc.
 - Demand for TTS systems has increased
 - High speech quality, multilingual language, speaking styles, etc.
- Multilingual language TTS systems
 - Thousands of languages exist in the world
 - To establish a framework that can be applied to build TTS system of any target languages
 - ⇒ One goal of speech synthesis research
 - Require a special knowledge of a target language

Focus on automatically constructing TTS of any languages

Outline

- Background
- Blizzard Challenge 2015 tasks
- Text-to-speech system
- System overview
 - Speech recognizer (SR)
 - Word aligner (WA)
 - Grapheme-to-phoneme converter (G2P)
 - Speech synthesizer (SS)
- Experiments
- Conclusions

Blizzard Challenge 2015 tasks

- Blizzard Challenge [Black, et al.; '05]
 - Blizzard Challenge was started in order to better understand and compare research techniques
- Speech synthesis for six Indian languages
 - Bengali, Hindi, Malayalam, Marathi, Tamil, Telugu
- Hub task
 - Build TTS systems in each Indian language
 - Provide speech data and corresponding to text
- Spoke task
 - Build a multilingual (polyglot) TTS system (Indian and English)
 - Training data for the Spoke task is same as for the Hub task
 - Sample input text (Hindi and English):
 Stanford वैज्ञानिकों द्वारा विकसित नयी aluminium battery,
 केवल एक minute में cellphone को charge कर सकती है.

Blizzard Challenge 2015 tasks

Need to construct TTS system from only speech data and corresponding to text

Text: प्रसद्दि कबीर अध्येता, पुरुषोत्तम अग्रवाल का यह शोध आलेख, ...

Outline

- Background
- Blizzard Challenge 2015 tasks
- Text-to-speech system
- System overview
 - Speech recognizer (SR)
 - Word aligner (WA)
 - Grapheme-to-phoneme converter (G2P)
 - Speech synthesizer (SS)
- Experiments
- Conclusions

TTS system components

- Text analysis part
 - Estimate pronunciation of an input text
 - Using a lexicon containing pronunciation information
 - High language-dependency

- Speech waveform generation part
 - Speech waveforms are generated from pronunciation info.
 - Unit-selection [Hunt, et al. '96]
 - Statistical parametric speech synthesis (SPSS)
 - Hidden Markov model (HMM) [Tokuda, et al.; '00]
 - Deep neural network (DNN) [Zen, et al.; '13]
 - Low language-dependency

TTS system construction

- Steps of TTS system construction
 - Acoustic features are modeled by using phoneme information

Investigate a framework to automatic TTS construction in any unknown-pronunciation languages

Outline

- Background
- Blizzard Challenge 2015 tasks
- Text-to-speech system
- System overview
 - Speech recognizer (SR)
 - Word aligner (WA)
 - Grapheme-to-phoneme converter (G2P)
 - Speech synthesizer (SS)
- Experiments
- Conclusions

System overview

System overview

Speech recognizer (SR) (1/3)

- Phoneme sequence corresponding to speech data
 - Speech recognition is carried out by using speaker-independent SR (SISR) of the other language, e.g., English
 - Triphone recognizer
 - Phoneset of SISR is used as phonset of target language

Construction flow

SISR output: sil th ih s ah t uh g ah b iy uh ih hh ih k ah sil ...

Text: प्रसद्दि कबीर अध्येता, पुरुषोत्तम अग्रवाल का यह शोध आलेख, ...

Speech recognizer (SR) (2/3)

- More accurate phoneme sequence
 - Speaker-dependent SR (SDSR) is constructed from phoneme sequences obtained by the SISR.
 - Estimation of phoneme sequences and training of SDSR are iterated
- Unsupervised training
 - Phoneme sequences obtained by the SISR is initial value
 - Data-driven training by repetition

Construction flow

Text: प्रसद्दि कबीर अध्येता, पुरुषोत्तम अग्रवाल का यह शोध आलेख, ...

Speech recognizer (SR) (3/3)

 Phoneme sequence taking account of phoneme duration

 Modeling of phoneme durations is important for an SS

- SR is difficult to consider phoneme duration
- Phoneme sequence is selected using alignment likelihood of HSMM
- Phoneme sequence with the highest alignment likelihood is selected as phoneme sequence

Construction flow

Obtain phoneme sequences of target language speech

System overview

Word aligner (WA)

- Word boundary (WB) information
 - Word-level G2P is suitable
 - WB information is useful for contextual factors of the SS
 - Phoneme sequences obtained by speech recognition does not include WB
- Target lang.
 text DB
 बहुत धन्यवाद

 Text (w/ WB)
 बहुत धन्यवाद

 Label
 (w/o WB)
 a g c d f ...

 WA

 Label (w/ WB)
 a g c l d f ...

- Joint multigram model-based WA
 - WA is constructed for estimation of WB
 - A pause of recognition results must be WB
 - Viterbi decoding

Construction flow

SISR output: sil th ih s ah t uh g ah b iy uh ih hh ih k ah sil ...

SDSR1 output: sil ah s uh b t ah g ah b iy d ah d hh ih t ae sil ...

SDSR2 output: sil r ah s uw b r uh g ah b iy d ah d hh ih t ae sil ...

N-best sil r ah s ih d r uh g ah b iy d ah d hh ih t ae sil ...

HSMM out Obtain WB information of phoneme sequence

WA output: sil r ah s ih d r uh g ah b iy d ah d hh ih t ae sil ...

Text: प्रसद्दि कबीर अध्येता, ...

Training WA

WA

System overview

Grapheme-to-phoneme converter (G2P) (1/2)

- Arbitrary input text need to be converted into phoneme sequence
 - Difficult to construct a lexicon in unknown-pronunciation language
- Joint multigram model-based G2P [Bisani, et at.; '08]
 - G2P is introduced instead of lexicon
 - Viterbi decoding
- Pause insertion
 - Comma, colon, parenthesis
 - Before or after a word that is easy to enter pause in a speech recognition result

Construction flow

SISR output: sil th ih s ah t uh g ah b iy uh ih hh ih k ah sil ...

SDSR1 output: sil ah s uh b t ah g ah b iy d ah d hh ih t ae sil ...

SDSR2 output: sil r ah s uw b r uh g ah b iy d ah d hh ih t ae sil ...

N-best desil rah s ih druh gah b iy dah dhh ih tae sil ...

:

HSMM o Obtain phoneme sequence of arbitrary input text

WA output: sil r ah s ih d r uh g ah b iy d ah d hh ih t ae sil ...

Text: प्रसद्दि कबीर अध्येता, ...

Training G2P

G₂P

Grapheme-to-phoneme converter (G2P) (2/2)

- Multilingual speech synthesis
 - Input text includes Indian language and English
 - Phoneset of acoustic model is the same as the English SISR
 - Can synthesize Indian language and English
 - Indian language text analysis: G2P
 - English text analysis: Festival

Can synthesize multilingual speech

System overview

Speech synthesizer (SS)

- Design of contextual factors
 - Quint phone
 - Syllable
 - Defined as C*V
 (C: consonant, V: vowel
 C*: none or more C)
 - Word
 - Phrase
 - Utterance

Base techniques

 STRAIGHT [Kawahara, et al.; '99], MSD [Tokuda, et al.; '02], HSMM [Zen, et al.; '04], GV [Toda, et al.; '05]

Construction flow

28

Strengths and weaknesses

Strengths

- Low language-dependency
 - Can apply to languages in which sentences written with space between words
- Multilingual speech synthesis
 - Can synthesize target language and English

Weaknesses

- Pronunciation (text analysis) error
 - Pronunciation errors can occur duo to errors in SR, WA, and G2P
- Difficult to adjust each components
 - I don't understand what synthesized speech is saying

Outline

- Background
- Blizzard Challenge 2015 tasks
- Text-to-speech system
- System overview
 - Speech recognizer (SR)
 - Word aligner (WA)
 - Grapheme-to-phoneme converter (G2P)
 - Speech synthesizer (SS)
- Experiments
- Conclusions

Speech recognizer conditions

English database	WSJ0, WSJ1, and TIMIT				
Indian database	Six Indian language				
Window	Hamming window				
Frame	length: 25 ms, shift: 10 m				
Feature vector	12-dimension MFCC + Δ + $\Delta\Delta$				
Model structure	3-state left-to-right HMM without skip transition				

	Bengali	Hindi	Malayalam	Marathi	Tamil	Telugu
Insertion penalty	-20	-40	-40	-40	-20	-10
Number of iteration	3	2	3	3	3	2

Speech synthesizer conditions

Indian database	Six Indian language				
Sampling rate	16.0 kHz				
Window	F0-adaptive Gaussian window				
Frame shift	5 ms				
	39-dim. STRAIGHT mel-cepstrum,				
Feature vector	log F0, 19-dmi. aperiodicity measure				
	$+ \Delta + \Delta \Delta$				
Model structure	5-state left-to-right MSD-HSMM				
Model Structure	without skip transition				

	Bengali	Hindi	Malayalam	Marathi	Tamil	Telugu
Number of sentences	1284	1690	1269	1178	1440	2461
Time	1h58m27s	3h57m59s	1h58m9s	2h6m7s	4h9m28s	4h11m34s

Evaluation conditions

Evaluation	Intelligibility (word error rate), MOS of speaker similarity,
criteria	MOS of naturalness
System A	Natural speech
System G	NITECH system

RD	Read text
SUS	Semantically unpredictable sentences
ML	Multilingual sentences (Indian and English)

	Bengali	Hindi	Malayalam	Marathi	Tamil	Telugu
Number of listeners	48	69	72	69	70	70

Word error rate (SUS)

	Bengali	Hindi	Malayalam	Marathi	Tamil	Telugu
	WER	WER	WER	WER	WER	WER
Α	43	42	59	35	29	82
В	52	49	64	35	57	70
С	100	34	50	26	49	46
D	57	25	78	30	49	60
Е	69	40	47	52	69	54
F	66	23	74	41	67	59
G	76	30	98	69	47	75
Н	55	24	46	35	57	46
I	100	31	73	1	50	62
J	61	40	52	21	60	57

Important to properly adjusts SR, WA, G2P for each language

MOS of speaker similarity

	В	enga	ali		Hind	i	Ма	layal	am	N	1aratl	hi		Tami	l	Т	elug	u
	RD	SUS	ML	RD	SUS	ML	RD	SUS	ML	RD	SUS	ML	RD	SUS	ML	RD	SUS	ML
Α	4.5	4.7	4.6	4.5	4.4	4.5	4.6	4.2	4.2	4.4	4.3	4.3	4.6	4.6	4.2	4.5	3.3	3.8
В	2.5	3.7	1.8	2.6	3.5	1.8	1.8	2.1	2.6	2.3	2.7	2.2	1.8	1.9	2.2	2.1	2.1	2.1
С	2.2	2.2	2.1	2.4	2.0	2.2	2.3	2.1	2.2	2.3	1.9	1.6	2.2	2.8	2.8	1.3	1.4	1.5
D	2.2	3.0	2.8	2.7	2.2	2.0	2.1	2.2	2.1	3.0	3.4	3.1	1.9	2.0	1.7	2.0	2.6	2.3
Е	3.7	3.3	4.1	2.9	2.8	3.5	2.9	2.6	3.2	2.9	3.4	2.7	2.7	2.6	3.3	2.9	2.5	2.5
F	1.7	2.6	2.1	4.3	3.9	3.1	2.3	2.3	2.6	3.0	2.8	2.7	2.7	2.5	2.6	2.5	2.0	2.2
G	3.1	3.1	2.2	2.8	2.9	2.2	2.3	2.1	2.0	2.5	2.2	2.1	2.3	3.1	2.4	3.1	2.2	1.4
Н	2.4	2.5	-	2.7	2.6	-	2.0	2.2	-	2.1	2.4	-	2.6	2.7	-	2.4	3.4	-
ı	2.9	2.3		3.5	3.3	_	3.0	3.2	_		-		3.6	3.4	-	4.2	1.9	-
J	27	28	_	2 2	22	_	20	20	_	28	21		26	23	_	27	20	-

The high MOS even though WER is the high rate (76%) ⇒ High WER or pronunciation errors scarcely affect MOS

MOS of naturalness

	В	enga	ali		Hind	İ	Ма	layal	am	M	1aratl	hi		Tami	l	Т	elug	u
	RD	SUS	ML	RD	SUS	ML	RD	SUS	ML	RD	SUS	ML	RD	SUS	ML	RD	SUS	ML
Α	4.7	4.6	4.7	4.7	4.4	4.7	4.3	4.3	4.4	4.6	4.5	4.8	4.7	4.6	4.7	4.8	4.5	4.8
В	2.2	2.7	1.8	3.2	2.6	1.8	1.6	1.9	1.9	2.7	2.5	2.2	2.2	2.2	2.2	1.9	1.8	2.0
С	2.9	3.1	2.6	3.5	3.3	3.2	2.6	2.8	2.4	2.5	2.7	2.6	2.8	3.3	2.9	2.6	2.5	2.5
D	3.0	3.0	2.6	2.8	2.7	2.3	2.3	2.4	2.2	3.0	2.9	2.6	2.6	2.6	2.3	2.1	2.5	2.6
E	3.4	2.7	3.8	2.6	3.0	3.2	2.3	2.7	3.6	3.0	3.3	3.4	2.5	3.0	4.0	2.8	2.7	2.9
F	2.0	1.8	1.6	3.9	3.9	2.9	2.9	2.5	2.7	3.2	3.2	2.9	3.6	3.2	3.3	3.5	2.5	2.6
G	2.5	2.8	2.2	2.3	2.4	2.0	1.7	2.0	1.9	2.2	2.2	2.1	2.4	2.3	2.6	2.1	2.1	2.4
Н	2.6	2.6	-	2.8	3.0	-	2.1	2.1	-	2.9	2.7	-	3.0	3.7	-	3.0	3.0	-
ı	2.7	2.1	-	2.8	3.2	-	2.7	2.9	-	-	-	-	3.2	3.0	-	2.9	2.1	-
J_	26	25	_	2 2	3 1	_	20	23	_	2 2	20	_	27	3.0	_	3.5	27	

The low MOS even though WER is the lowest rate (47%)

⇒ Even a little word pronunciation error often affects MOS

Speech samples

	Bengali	Hindi	Malayalam	Marathi	Tamil	Telugu
RD						
SUS						
ML						
П						1
Pd	fatie poiska स्टिक्टि काख़िर साध्या	शस्त्र ता भंदर्धिक चीर्ने भ्रम्मती भंदर्भेटिक	grandini pindikisi Bandini pindikisi		pied no pie co	హాంజా ద్, కోంది.

Outline

- Background
- Blizzard Challenge 2015 tasks
- Text-to-speech system
- System overview
 - Speech recognizer (SR)
 - Word aligner (WA)
 - Grapheme-to-phoneme converter (G2P)
 - Speech synthesizer (SS)
- Experiments
- Conclusions

Conclusions

- TTS system developed for the Blizzard Challenge 2015
 - Investigated automatic TTS system construction in an unknown-pronunciation language
 - Enabled a target language and multilingual TTS construction
 - Achieved a high score if the SR, WA, and G2P component can properly construct

Future work

- Investigation of a construction criteria
- Construction of the multilingual SISR using the IPA
- Investigation of phoneset determination approaches based on speech data