The NITech text-to-speech system for the Blizzard Challenge 2017

Kei Sawada, Kei Hashimoto, Keiichiro Oura, Keiichi Tokuda

Nagoya Institute of Technology (NITech)

Blizzard Challenge 2017 Workshop on Aug. 25, 2017

Background

Text-to-speech (TTS) systems

- TTS systems are used in various applications
- Demand for TTS systems is increasing
 - High-quality, various speaking styles, various languages, etc.

Evaluations of TTS systems

- Comparisons are difficult when the training corpus, task, and listening test are different
- Blizzard Challenge [Black et al. '05]
 - In order to better understand and compare research techniques in constructing corpus-based TTS systems with the same data

NITech TTS system for the Blizzard Challenge

 NITech have been submitting a statistical parametric speech synthesis (SPSS) system to the Blizzard Challenge since 2005

Blizzard Challenge 2017 task

Blizzard Challenge 2017

- Task
 - Construct a TTS system from children's audiobooks that is suitable for reading audiobooks to children
- Data
 - 7 hours speech data and text pairs
 - 56 books were recorded by one female English speaker
 - Speech data includes various speaking styles, emotions, characters, etc.
 - Example of provided data

"I'm king of the jungle," roared Lion.
"I'm going to eat you all up."
"No!" cried the jungle animals.

Character1
Character2
Descriptive part

Review of Blizzard Challenge 2016

Blizzard Challenge 2016

- The task was almost same as the Blizzard Challenge 2017
- Difference was the amount of training data (2016: 5 hours, 2017: 7 hours)

Result of Blizzard Challenge 2016

- MOS for naturalness
 - MOS of SPSS systems is not so good
- Why?
 - Training corpus includes various speaking variations
 - ⇒ Modeling is difficult

Redesign of linguistic features for audiobooks in SPSS

Mean Opinion Scores (naturalness) - All listeners

Red: hybrid systems

Blue: unit selection systems

Green: SPSS systems

NITech TTS system

- Linguistic features for audiobooks in SPSS
- Trajectory training considering GV for mixture density networks

NITech TTS system

- Linguistic features for audiobooks in SPSS
 - Trajectory training considering GV for mixture density networks

Linguistic features for audiobooks

Linguistic features

- Features obtained from texts express pronunciations
- Suitable design for audiobooks is necessary

Additional linguistic features to HTS-2.3.1 demo script

- Page-level information
 - Capture supra-sentential information
- Syntactic and dependency parsing information
 - Capture sentence structure
- Type of sentence
 - Distinguish different type of sentence
- Double quotes information
 - Distinguish between descriptive and conversational parts
- Word and phrase codes
 - Distinguish each word and phrase variation

Phrase code

Training part

- A unique value (phrase code) is assigned to each phrase
- Phrases are distinguished to represent speaking variation

Phrase code

Training part

- A unique value (phrase code) is assigned to each phrase
- Phrases are distinguished to represent speaking variation

Synthesis part

- Phrase is vectorized by using doc2vec [Le et al. '14]
- Phrase similarity between training and input phrases is calculated from vectorized ones
- Phrase code of the highest similarity phrase is used

Phrase code

Training part

- A unique value (phrase code) is assigned to each phrase
- Phrases are distinguished to represent speaking variation

Synthesis part

- Phrase is vectorized by using doc2vec [Le et al. '14]
- Phrase similarity between training and input phrases is calculated from vectorized ones
- Phrase code of the highest similarity phrase is used

Input text	Text of phrase adaptation	Synthesized speech
	Zero vector (average phrase)	
"I must tell	Come and see the friendly lion!	
Hamlet."	"Who's been sitting in my chair?"	
	"I must tell the King." (highest similarity phrase) 🔊	O

Realize expressive speech synthesis

NITech TTS system

- Linguistic features for audiobooks in SPSS
- Trajectory training considering GV for mixture density networks

DNN-based SPSS

DNN-based SPSS [Zen et al. '13]

- DNN is trained to represent a mapping function from linguistic features to acoustic features
- Mixture density network (MDN)-based SPSS [Zen et al. '14]
 - DNN outputs provide Gaussian mixture model parameters
- Inconsistency in training and synthesis criteria
- Over-smoothing on speech parameter trajectories

Trajectory training considering GV for DNN-based SPSS [Hashimoto et al. '16]

- Can address inconsistency between training and synthesis
- DNN is optimized considering GV

Trajectory training considering GV for MDN-based SPSS

- Expect high-quality acoustic model
- Use a single MDN as the acoustic model

Frame-level training

 $m{l}_t$: linguistic feature vector

 $oldsymbol{c}_t$: static-feature vector

 $ar{m{c}}_t$: optimal static-feature vector $m{\Sigma}_{ ext{GV}}$: GV covariance matrix

 Σ_t : covariance matrix

 μ_t : mean vector

 $oldsymbol{P}$: sequence covariance matrix

 $w : \mathsf{GV}$ weight

13

Trajectory training considering GV

 $m{l}_t$: linguistic feature vector

 $oldsymbol{\mu}_t$: mean vector

 Σ_t : covariance matrix

 $oldsymbol{P}$: sequence covariance matrix

 $oldsymbol{v}(\cdot)$: GV vector

 $ar{c}_t$: optimal static-feature vector $oldsymbol{\Sigma}_{ ext{GV}}$: GV covariance matrix

 $w : \mathsf{GV}$ weight

TTS system conditions

Training corpus	921 pages
Sampling rage	44.1 kHz
Frame	window: F0-adapteve Gaussian, shift: 5 ms
HMM structure	5-state left-to-right MSD-HSMM
Acoustic features (HMM)	49-dim. STRAIGHT mel-cepstrum, 24-dim. mel-cepstrum aperiodicity measure, log F0, and Δ + $\Delta\Delta$
Number of questions	925 questions
MDN structure	3 hidden layers with 8000 hidden units, activation function: sigmoid (hidden), linear (output), dropout rate: 60%, GV weight: 0.001
Acoustic features (MDN)	69-dim. STRAIGHT mel-cepstrum, 34-dim. mel-cepstrum aperiodicity measure, interpolated log F0, voiced/unvoiced information
Linguistic features	925-dim. linguistic features for contexts, 10-dim. duration features, 150-dim. word code, 600-dim. phrase code

Synthesized speech samples

Experimental results

Experimental conditions

- 16 TTS system (+ 1 natural speech)
- Results of all participants

Page domain (60-point MOS)

Criterion	Overall impression	Pleasant ness	Speech pause	Stress	Intonation	Emotion	Listening effort
MOS	31	30	31	31	31	33	31
Rank	4 th	5 th	4 rd	4 rd	4 th	4 th	3 th

Sentence domain (5-point MOS)

Criterion	Naturalness	Similarity
MOS	3.6	3.0
Rank	3 th	7 th

Intelligibility test

WER	30%
Rank	1 st

Highly natural synthesized speech

Experimental results

Experimental conditions

- 16 TTS system (+ 1 natural speech)
- Results of all participants

Page domain (60-point MOS)

Criterion	Overall impression	Pleasant ness	Speech pause	Stress	Intonation	Emotion	Listening effort
MOS	31	30	31	31	31	33	31
Rank	4 th	5 th	4 rd	4 rd	4 th	4 th	3 th

Sentence domain (5-point MOS)

Criterion	Naturalness	Similarity
MOS	3.6	3.0
Rank	3 th	7 th

Intelligibility test

WER	30%
Rank	1 st

Compared with MOS of naturalness, MOS of speaker similarity is low score

Experimental results

Experimental conditions

- 16 TTS system (+ 1 natural speech)
- Results of all participants

Page domain (60-point MOS)

Criterion	Overall impression	Pleasant ness	Speech pause	Stress	Intonation	Emotion	Listening effort
MOS	31	30	31	31	31	33	31
Rank	4 th	5 th	4 rd	4 rd	4 th	4 th	3 th

Sentence domain (5-point MOS)

Criterion	Naturalness	Similarity
MOS	3.6	3.0
Rank	3 th	7 th

Intelligibility test

WER	30%
Rank	1 st

Highly intelligible synthesized speech

Conclusion

NITech TTS system for the Blizzard Challenge 2017

- Linguistic features for audiobooks in SPSS
- Trajectory training considering GV for MDN-based SPSS
- Large-scale subjective listening tests
 - Synthesized highly natural and intelligible speech
 - Should improve speaker similarity

Future work

- Improve robustness of outliers
 - ε-contaminated Gaussian loss [Zen et al. '16]
- Introduce direct speech waveform prediction models
 - WaveNet [van den Oord et al. '16]