The NITech text-to-speech system for the Blizzard Challenge 2018

<u>Kei Sawada^{1,2}</u>, Takenori Yoshimura¹, Kei Hashimoto¹, Keiichiro Oura¹, Yoshihiko Nankaku¹, Keiichi Tokuda¹

¹Nagoya Institute of Technology (NITech) ²Microsoft Development Co., Ltd.

Blizzard Challenge 2018 Workshop on Sep. 8, 2018

Background

• Text-to-speech (TTS) systems

- TTS systems are used in various applications
- Demand for TTS systems is increasing
 - High-quality, various speaking styles, various languages, etc.
- Success by introducing deep learning
 - DNN, LSTM, WaveNet, Deep Voice, Char2Wav, Tacotron, etc.

• Evaluations of TTS systems

- Comparisons are difficult when the training corpus, task, and listening test are different
- Blizzard Challenge [Black et al. '05]
 - In order to better understand and compare research techniques in constructing corpus-based TTS systems with the same data

• NITech TTS system for the Blizzard Challenge

 NITech have been submitting a statistical speech synthesis system to the Blizzard Challenge since 2005

Blizzard Challenge 2015-2018

• Task

 Construct a TTS system from children's audiobooks that is suitable for reading audiobooks to children

Oata

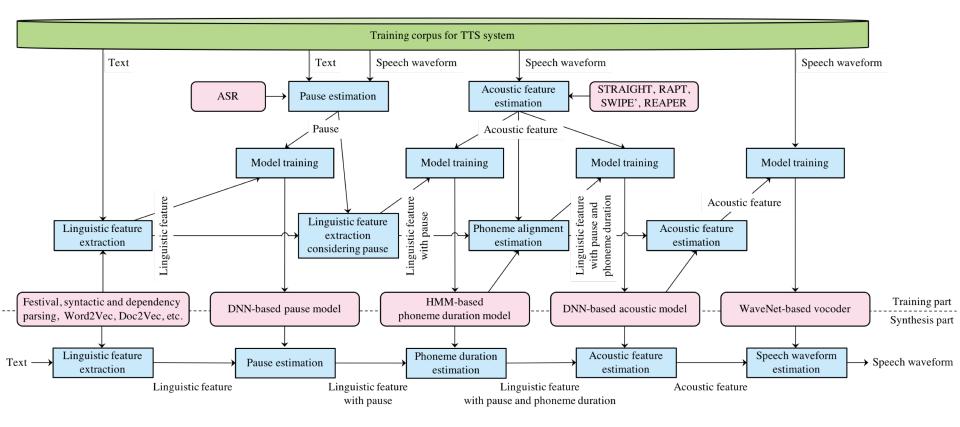
- Children's audiobooks were recorded by one female speaker
 - 2015 (pilot task year): 2 hours
 - 2016: 5 hours
 - 2017, 2018: 7 hours
- Mismatches between speech data and text
 - Misreading, onomatopoeia, etc.
- Speech data includes various speaking styles
 - Emotions, characters, singing voices, etc.

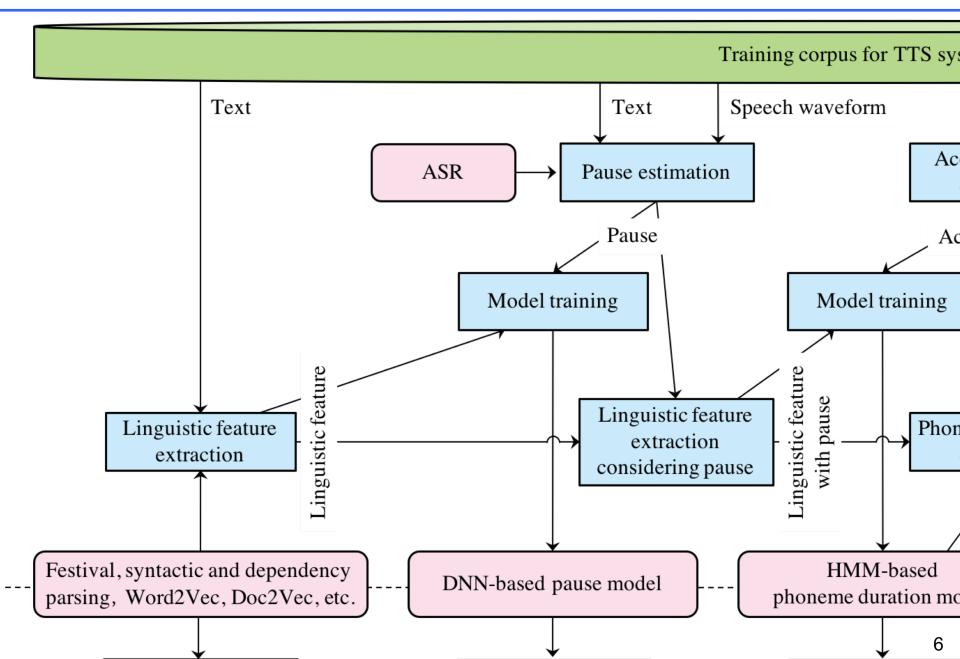
Character1 Character2 Descriptive part

NITech 2015-2018 TTS systems

NITech 2015 TTS system (小) (小)

- Pruning of training data based on ASR
- Introduction of linguistic features based on quotation marks


- Automatic construction of training corpus based on ASR
- Introduction of linguistic features based on syntactic parsing
- Introduction of DNN acoustic model considering GV trajectory


NITech 2017 TTS system (小) (小)

- Introduction of linguistic features which can predict and reproduce speaking style from text
- Introduction of MDN acoustic model considering GV trajectory

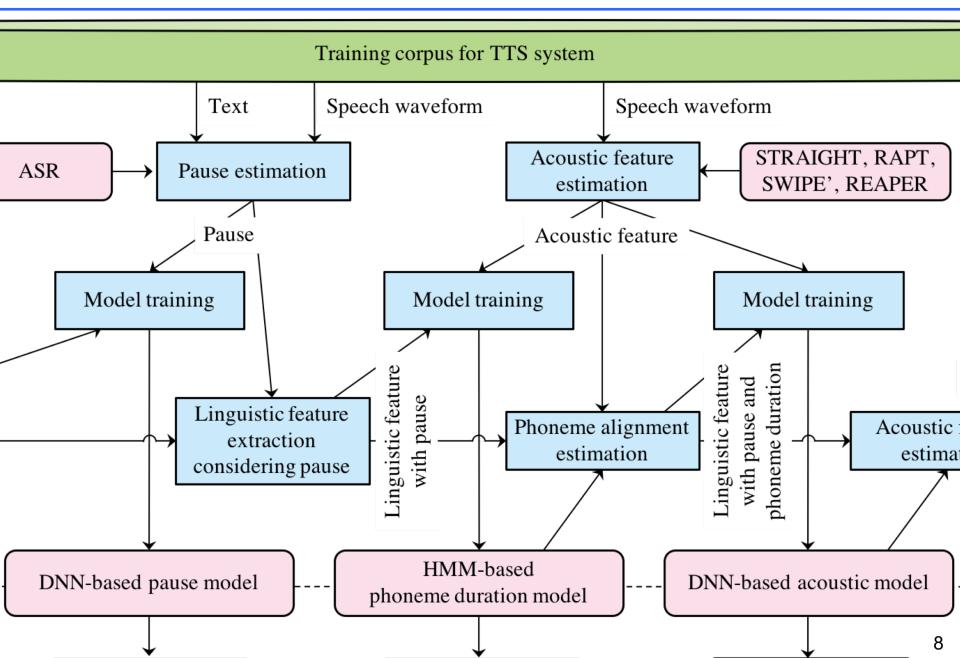
• NITech 2018 TTS system ()

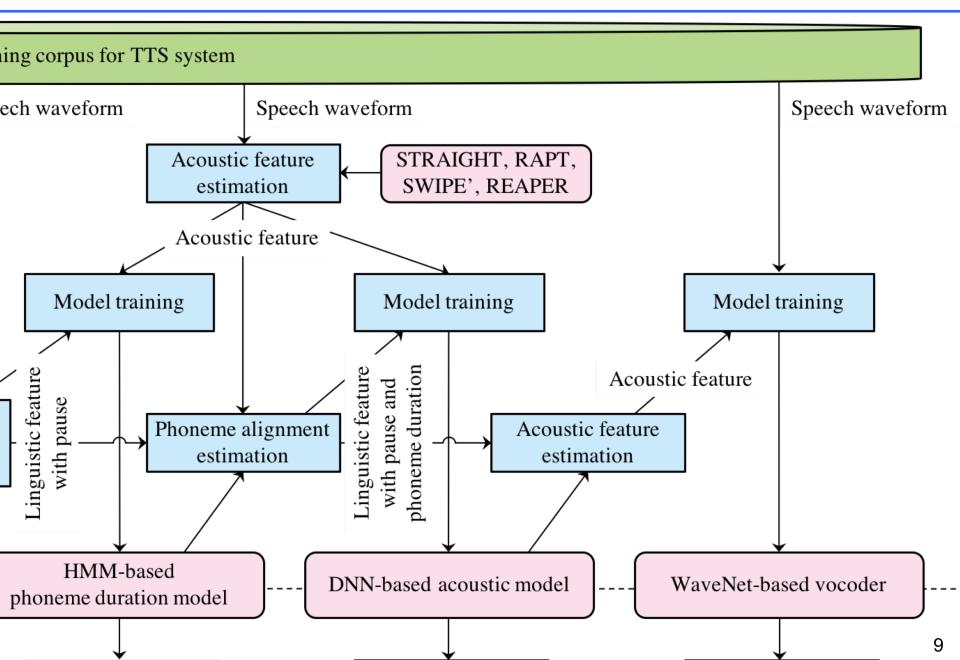
- Introduce pause insertion model
- Introduce WaveNet vocoder

Pause insertion model

Pause insertion

Pause is used as one of emotional expressions


⇒ Introduce pause insertion model to reproduce pause insertion style of training corpus


• Pause estimation of training corpus

- Phoneme alignment estimation including short pause at all word boundaries
- Short pause model (HMM with state skip transition)
- Duration of estimated short pause is equal to or greater than threshold ⇒ word boundary contains a pause

Pause insertion model

- Bi-directional gated recurrent unit (GRU)
- Input: linguistic features of word- and sentence-level
- Output: whether or not a pause is inserted after the word (0 or 1)

WaveNet-based vocoder

• Frame-level vocoder

Vocoder introduce degradation in speech quality

⇒ Introduce neural vocoder

• WaveNet vocoder [van den Oord et al.; '16], [Tamamori et al.; '17]

- Directly modeling and generation speech waveform
- Modeling speech waveform as classification problem
- Quantization scheme introduces flat white noise
 - ⇒ Introduce noise shaping quantization

[Yoshimura et al.; '18]

• Mel-cepstrum-based quantization noise shaping

- Quantization noise considering human auditory
- Apply mel-cepstrum-based prefilter to speech signals

[Tokuda et al.; '94]

Realize high-quality speech waveform generation

Experimental conditions (1/3)

Conditions of training corpus construction

Provided data	1258 pages	
Acoustic features	12 dim. MFCC + Δ + ΔΔ	
Acoustic model	3 state left-to-right tri-phone GMM-HMM	
Language model	Tri-gram	
Training corpus for TTS	924 pages	

• Conditions of pause insertion model

Input features	251 dim. linguistic features	
Structure of DNN	Bi-directional gated recurrent unit, 3 hidden layers, 128 units, ReLU	
Training algorithm	Adam, dropout rate 20%	

Experimental conditions (2/3)

• Conditions of phoneme duration model

Sampling rate	32 kHz
Acoustic features	64 dim. STRAIGHT mel-cepstrum, log F0, 32 dim. mel-cepstrum aperiodicity measure + Δ + ΔΔ
Number of questions	925 questions
Structure of HMM	5 state left-to-right MSD-HSMM

• Conditions of acoustic model

Sampling rate	32 kHz
Acoustic features	64 dim. STRAIGHT mel-cepstrum, log F0 V/UV info., 32 dim. mel-cepstrum aperiodicity measure
Linguistic features	1685 dim.
Structure of DNN	Single-mixture density network, 3 hidden layers, 8000 units, sigmoid
Training algorithm	SGD, dropout rate 60%, Trajectory training considering GV

Experimental conditions (3/3)

• Conditions of WaveNet vocoder

Sampling rate	32 kHz
Quantization	8 bit µ-law
Noise shaping parameters	γ =0.1, β=0.1
Structure of WaveNet	Dilation: [1, 2, 4,, 512] 3 stacks Dilation, residual, skip: 256
Condition features of WaveNet	98 dim. acoustic features
Training algorithm	Adam

Demo

())

()))

The picture is quoted from the Usborne Publishing. 14

Evaluation results of sentence domain

Natura	alness	Simi	arity	Inte	Intelligibility	
MOS	ID	MOS	ID	WE	R ID	
4.8	A	4.5	А	11	1	
4.0	K	3.9	K	14	E, O	
3.7	J	3.6	J	15	5 D, G	
3.5	I	3.5	1	16	K	
3.0	L, M	3.4	L	17	' N	
2.9	В	3.2	В	18	J	
2.8	D	3.0	М	20) F	
	1					

A: Natural speech

B, C, D, E: Benchmark TTS systems

I: NITech TTS system

Red line: Significant difference between NITech and other systems

Evaluation results of page domain

Overall	im	pression	Pleasantness		S	peech	h pause		Stress	
MOS	S	ID	MOS	ID	I	MOS	ID		MOS	ID
48	3	А	48	А		48	А		48	A
38	3	K	37	К	_	36	K, J		36	K
34	ŀ	J, I	33	J, I		32	I.		35	J
29)	В	28	L, B		31	D, G		33	1
28	3	L	26	Μ		30	Е		30	D, G
Int	on	ation	Emo	otion	Li	stenir	ig effor	t		
Int MOS		ation ID	Emc MOS	otion ID		stenir MOS	i g effor ID	t		
	S						•	t		
MOS	S }	ID	MOS	ID		MOS	ID	t		
MO\$ 48	5 } ,	ID A	MOS 48	ID A		MOS 49	ID A	t		
MOS 48 37	5	ID A K	MOS 48 38	ID A K		MOS 49 37	ID A K	t		
MO 48 37 35	5 3 7 5 3	ID A K	MOS 48 38 35	ID A K J, I		MOS 49 37 34	ID A K	t		

Comparison of NITech 2017 and 2018

Introduction of WaveNet vocoder

- Improved naturalness and speaker similarity
- Sometimes ambiguous pronunciation
 - Multiple codecs and noise made WaveNet training difficult
- Reduced reproducibility of speaking styles
 - Training data is insufficient to reproduce various speaking styles

2017	2018

http://www.sp.nitech.ac.jp/~swdkei/syn/Blizzard_2018/index.html

Conclusion

• NITech TTS system for the Blizzard Challenge 2018

- Introduce pause insertion model
- Introduce WaveNet vocoder
- Large-scale subjective listening tests
 - Synthesized highly natural, similar, and intelligible speech
- Comparison of NITech 2017 and 2018 TTS systems
 - Improved naturalness and speaker similarity
 - Insufficient accuracy of WaveNet vocoder

• Future work

- Generate expressive synthesized speech in neural vocoder
- Introduce end-to-end approach