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1. Introduction 4. Separable lattice 2-D HMMs 5. Experiments
using variational Bayesian method

o Image recognition based on statistical approaches o Experimental conditions

* Eigen-image and subspace methods based on PCA o Maximum a posteriori (MAP) method [Gauvain, et al.; '94] Natabase MOVTS
* Heuristic normalization techniques for each task are required * Estimation of model parameters by maximizing posterior probability .
| Image size 64 %64, grayscale
o Sepgrable lattice 2.-D HMMS I(SLZD-HMI\/IS) [Kurata, et al.; '006] AMAp = arg mgxp(o A)P(A) Training data 6. 5.4, 3. 2 images per person x 100 subjects
* Training and normalization are integrated ot dat . 00 subroct
STV y
* ML criterion produces point estimation of model parameters * Use of prior distribution | | est datd Mages per person SUbJects
— Estimation accuracy may be decreased due to the over-fitting » Over-fitting problem because of point estimates Number of states | 8x8, 16x16, 24x24, 32x32, 40x40, 48x48, 56x56, 64x64
o Bayesian criterion o Variational Bayesian (VB) method [Attias; '99] Tuning parameter T 50, 100, 500, 1000, 2000, 3000, 4000, 5000,
. C e C e . . . . T 6000, 7000, 8000, 9000, 10000, 50000, 100000
e Use of prior distribution and marginalization of model parameters * Estimation of approximated posterior distribution

* Define a low bound of log marginal likelihood o Examples of training images and mean vectors

In P (0) = an/P(O,S\A) P(A)dA -

2. Separable lattice 2-D HMMs > P(0.5|A) P(A Jensen’s inequality

(A)
o Separable lattice 2-D hidden Markov models = ZS /Q<57A) A A
S : State sequence

* SL2D-HMMs with horizontal and vertical Markov chains = F(Q) Q (S, A): Arbitrary dist
= An elastic matching in both horizontal and vertical directions

Apply Bayesian criterion to separable lattice 2-D HMMs

* Relation between the log marginal likelihood and the lower bound

F=InP(0)-KLQ(S,A) ||[P(S,A]0)) = P(S,A|0) ~ Q(S,A) E a
* Assume that random variables are conditionally independent
Mean vector
Q (S, A) =Q(S)Q(A) = Q(S(l))Q(S(Q))Q (A) Q)(-) : Variational posterior dist. All training images Of One subject of UBM

* Estimation of posterior distribution based on maximizing F

Horizontal state sequence SV

Location and
Size variations
= Normalize by
changing the
duration of the state

(s — g2y _
VB E-step | € (5) arg@l{}g&g)f Q' (S5*) arg@rglseg))f .

Vertical state sequence §(2)

/ Alternately update
- | VB M-step Q' (A) = arg mzjxxx]: ] _ g Y >
|mages are d-|v|d-ed into Q(A) Mean vector T = 100000 T — 10000 T — 1000 T — 100
a rectangular region in the state e Derive variational posterior distribution of model (ML) Mean vector of posterior distribution (VB)
8 Each pixel is emitted from | ' o Results
. y a corresponding output Q(S') o exp Z/Q(S(2))Q(A) In (0,5, 5| A)dA
Horizontal state transition e g et @) ]
8 probability distribution : : Training data are 6 images Training data are 6 to 2 images
S / SNQA)In P(0O,S™M, 82 | A)dA -
Vertical state transition T QUS™) o exp Z QIST)RA) I PO, 57, A) ML | | _ -
Output probability distribution LS | MAP I | _ 20
] 70 + VB | IR e | | e -
. . Q(A) o P(A)exp Sj > Q(SM)Q(S®)In PO, 8V, 8P| A) — - - i < 60
3. Bayesian criterion YOre - < 1 Ul R S B T 13
o 60 5 - £ 50
o Maximum likelihood (ML) criterion e Use of prior distribution and marginalization of model parameters . % 40
. . . - O 50 LTI LHR Tl 4 =
* ML criterion produces point estimation = Over-fitting problem o Prior distribution g Sl - Sa0 bl o\
®)

o Bayesian criterion  Conjugate prior distribution § ao L CIOUE O Il O ] (] 1 S0l  NO
e Use of prior distribution and marginalization of model parameters * Posterior dist. belongs to the same dist. family as the prior dist. P e N .
* Complex integral and expectation calculations Initial state probability Dirichlet distribution R IR AR AR 1 LVB T

= Effective approximation techniques are required - - — O = 6 5 4 3 2
_ . . _ State transition probability Dirichlet distribution 8x8 16x16 24x24 32x32 40x40 48x48 56x56 64x64 Number of training images
ML criterion Prior information || Prior dist. P(A) Bayesian criterion Output probability distribution Gauss-Wishart distribution Number of states 40 x 40 states
‘ ‘ I O A » Universal background model (UBM) ML : ML criterion (conventional) MAP and VB : Bayesian criterion (proposed)
A, = argmax P(O]A) I Training data | Posterior dist. P(A|O) = » UBM is trained from all training data for all subjects e Bayesian criterion achieved significantly higher recognition rates than
P(0O) yeslan 9 y nig g
l I = UBM roughly represents a training data ML criterion
— Predictive dist. * Tuning parameter T * The difference between ML criterion and Bayesian criterion became
Predictive dist. P(X | AML)‘_ Test data B P (X ‘ O) _ /P (X ‘ A) P (A ‘ O) AA P Representation of the re||ab|||ty of the UBM Iarger When Sma” numberS Of training imageS were Used
‘ ‘ ¢ 7 is small = Prior distribution has a larger impact on posterior distribution * The use of a prior distribution was more effective than the
A : Set of model parameters O : Training data X : Test data ¢ T Is large = Prior distribution has a smaller impact on posterior distribution marginalization of model parameters




