An HMM-Based Approach to Flexible Speech Synthesis

Keiichi Tokuda Nagoya Institute of Technology

Towards Human-like Talking Machines

- □ For realizing natural human-computer interaction, speech synthesis systems are required to have an ability to generate speech with:
 - arbitrary speaker's voice
 - various speaking styles
 - emphasis
 - emotional expressions
 - and so on

Corpus-Based Speech Synthesis

■ Unit selection approach

- High quality speech can be synthesized using waveform concatenation algorithms.
- To obtain various voices, a large amount of speech data is necessary.

■ HMM-based approach

- Generate speech parameters from statistics.
- Voice quality can easily be changed by transforming HMM parameters.

System Overview

Overview of This Talk

- □ Basic Techniques
 - Vocoding technique
 - Speech Parameter generation algorithm
 - F0 pattern modeling
- □ Recent improvements and evaluation
- □ Relation to the unit selection approach
- □ Flexibility of the approach
 - Speaker adaptation (mimicking voices)
 - Speaker Interpolation (mixing voices)
 - Eigenvoices (producing voices), etc.

Overview of This Talk

- Basic Techniques
 - Vocoding technique
 - Speech Parameter generation algorithm
 - F0 pattern modeling
- Recent improvements and evaluation
- □ Relation to the unit selection approach
- □ Flexibility of the approach
 - Speaker adaptation (mimicking voices)
 - Speaker Interpolation (mixing voices)
 - Eigenvoices (producing voices), etc.

Source-Filter Model

D(z) should be defined by the state output vector of HMM, e.g., mel-cepstrum, lsp's

Synthesis Filter Model

$$D(z) = \exp \sum_{m=0}^{M} c(m) \tilde{z}^{-m}, \quad \tilde{z}^{-1} = \frac{z^{-1} - \alpha}{1 - \alpha z^{-1}} \Big|_{z=e^{-j\omega}} = e^{-j\tilde{\omega}}$$

Objective Function

$$egin{array}{lll} oldsymbol{c} & = rg \max_{oldsymbol{c}} P(oldsymbol{x} \mid oldsymbol{c}) \\ oldsymbol{x} & = & \left[x(0), \, x(1), \, \ldots, \, x(N-1) \right]' \\ oldsymbol{c} & = & \left[c(0), \, c(1), \, \ldots, \, c(M) \right]' \end{array}$$

Evaluation in Speech Recognition

Synthesis Filter

$$D(z) = \exp F(z), \qquad F(z) = \sum_{m=0}^{M} c(m) \tilde{z}^{-m}$$

MLSA Filter

$$D(z) = \exp F(z) \simeq \frac{1 + \sum_{l=1}^{L} A_{L,l} \{F(z)\}^{l}}{1 + \sum_{l=1}^{L} A_{L,l} \{-F(z)\}^{l}}$$

Features of MLSA Filter

- □ Filter coefficients given by mel-cepstrum
- □ Sufficient approximation accuracy
 - ⇒ maximum spectral error 0.24dB
- □ Guaranteed stability
- □ Computationally efficient
 - \Rightarrow O(M) multiply-add operations a sample

Vocoded Speech Samples

Overview of This Talk

- Basic Techniques
 - Vocoding technique
 - Speech Parameter generation algorithm
 - F0 pattern modeling
- Recent improvements and evaluation
- □ Relation to the unit selection approach
- □ Flexibility of the approach
 - Speaker adaptation (mimicking voices)
 - Speaker Interpolation (mixing voices)
 - Eigenvoices (producing voices), etc.

System Overview (only spectrum part)

Hidden Markov Model: HMM

Output Probability of HMM

$$P(\boldsymbol{O} \mid \lambda) = \sum_{\boldsymbol{Q}} P(\boldsymbol{O}, \boldsymbol{Q} \mid \lambda) = \sum_{\boldsymbol{Q}} \prod_{t=1}^{I} a_{q_{t-1}q_t} b_{q_t}(\boldsymbol{o}_t)$$

Speech Parameter Generation

For given HMM λ , determine a speech parameter vector sequence $O = \begin{bmatrix} o_1^\top, o_2^\top, \dots, o_T^\top \end{bmatrix}^\top$ which maximizes

$$P(\boldsymbol{O} \mid \lambda) = \sum_{\boldsymbol{Q}} P(\boldsymbol{O} \mid \boldsymbol{Q}, \lambda) P(\boldsymbol{Q} \mid \lambda)$$

$$\simeq \max_{\boldsymbol{Q}} P(\boldsymbol{O} \mid \boldsymbol{Q}, \lambda) P(\boldsymbol{Q} \mid \lambda)$$

$$\downarrow \downarrow$$

$$Q_{\max} = \underset{Q}{\operatorname{arg} \max} P(Q | \lambda)$$
 $O_{\max} = \underset{Q}{\operatorname{arg} \max} P(O | Q_{\max}, \lambda)$

.

Determination of State Durations

$$P(\boldsymbol{Q} \mid \lambda) = \prod_{i=1}^{K} p_i(d_i)$$

Standard HMM $\Rightarrow p_i(d_i)$: geometric distribution

Gaussian with mean m_i and variance σ_i^2

$$d_i = m_i, \quad i = 1, 2, ..., K$$

Speech Parameter Generation

For given HMM λ , determine a speech parameter vector sequence $O = \begin{bmatrix} o_1^\top, o_2^\top, \dots, o_T^\top \end{bmatrix}^\top$ which maximizes

$$P(\boldsymbol{O} \mid \lambda) = \sum_{\boldsymbol{Q}} P(\boldsymbol{O} \mid \boldsymbol{Q}, \lambda) P(\boldsymbol{Q} \mid \lambda)$$

$$\simeq \max_{\boldsymbol{Q}} P(\boldsymbol{O} \mid \boldsymbol{Q}, \lambda) P(\boldsymbol{Q} \mid \lambda)$$

$$\downarrow \downarrow$$

$$Q_{\max} = \arg \max_{Q} P(Q | \lambda)$$
 $O_{\max} = \arg \max_{Q} P(O | Q_{\max}, \lambda)$

.

Without Dynamic Feature

O becomes a sequence of mean vectors.

Integration of Dynamic Feature

Solution for The Problem

By setting

$$\frac{\partial \log P(\boldsymbol{W}\boldsymbol{C} \mid \boldsymbol{Q}_{max}, \lambda)}{\partial \boldsymbol{C}} = \boldsymbol{0}$$

we obtaine

$$\boldsymbol{W}^{\top} \boldsymbol{U}^{-1} \boldsymbol{W} \boldsymbol{C} = \boldsymbol{W}^{\top} \boldsymbol{U}^{-1} \boldsymbol{M}$$

where

$$egin{aligned} oldsymbol{C} &=& \left[oldsymbol{c}_{1}^{ op}, oldsymbol{c}_{2}^{ op}, \ldots, oldsymbol{c}_{T}^{ op}
ight]^{ op} \ oldsymbol{M} &=& \left[oldsymbol{\mu}_{q_{1}}^{ op}, oldsymbol{\mu}_{q_{2}}^{ op}, \ldots, oldsymbol{\mu}_{q_{T}}^{ op}
ight]^{ op} \ oldsymbol{U}^{-1} &=& \mathsf{diag}\left[oldsymbol{U}_{q_{1}}^{-1}, oldsymbol{U}_{q_{2}}^{-1}, \ldots, oldsymbol{U}_{q_{T}}^{-1}
ight] \end{aligned}$$

Generated Speech Parameter

Generated Spectra

Effect of Dynamic Features

Overview of This Talk

- Basic Techniques
 - Vocoding technique
 - Speech Parameter generation algorithm
 - F0 pattern modeling
- Recent improvements and evaluation
- □ Relation to the unit selection approach
- □ Flexibility of the approach
 - Speaker adaptation (mimicking voices)
 - Speaker Interpolation (mixing voices)
 - Eigenvoices (producing voices), etc.

HMM-Based Speech Synthesis System

Observation of F0

MSD-HMM

MSD-HMM for F0 Modeling

State Output Vector

Context Clustering

Context Clustering: Factors

- □ {preceding, current, succeeding} phoneme
- □ Position of current phoneme in current syllable
- □ Number of phonemes at {preceding, current, succeeding} syllable
- □ Accent of {preceding, current, succeeding} syllable
- Position of current syllable in current word
- □ Number of {preceding, succeeding} stressed syllables in current phrase
- □ Number of {preceding, succeeding} accented syllables in current phrase
- □ Number of syllables {from previous, to next} stressed syllable
- □ Number of syllables {from previous, to next} accented syllable
- □ Vowel within current syllable
- ☐ Guess at part of speech of {preceding, current, succeeding} word
- □ Number of syllables in {preceding, current, succeeding} word
- □ Position of current word in current phrase
- □ Number of {preceding, succeeding} content words in current phrase
- □ Number of words {from previous, to next} content word
- □ Number of syllables in {preceding, current, succeeding} phrase
- □ Position in major phrase
- □ ToBI endtone of current phrase

Context Clustering: HMM Structure

HMM for Spectrum and F0

Decision Tree for Spectrum

Decision Tree for State Duration Model

Decision Tree for F0

Tree for Spectrum (1st state)

Questions about phonetic attributes

Tree for F0 (1st state)

Questions about linguistic attributes

Tree for State Duration

- □ Linguistic questions for pause
- □ Phonetic questions for speech

Generated F0

natural speech

without dynamic features

with dynamic features ($\Delta + \Delta^2$)

Effect of Dynamic Feature

Subjective Evaluation Result (Preference Score)		Dynamic feature of spectrum	
		with	without
Dynamic feature of F0	with	91.3%	37.5% 4
	without	35.8%	11.8%

「小さな鰻屋に、熱気のようなものがみなぎる」 "Chiisana unagiyani, nekkinoyouna monoga minagiru"

Overview of This Talk

- Basic Techniques
 - Vocoding technique
 - Speech Parameter generation algorithm
 - F0 pattern modeling
- □ Recent improvements and evaluation
- □ Relation to the unit selection approach
- □ Flexibility of the approach
 - Speaker adaptation (mimicking voices)
 - Speaker Interpolation (mixing voices)
 - Eigenvoices (producing voices), etc.

Recent Improvements

- □ Introduction of "hidden semi-Markov models"
- □ STRAIGHT vocoding
- □ Parameter generation considering global variance (GV)
- ⇒ Now, it is competitive to state-of-the-art unit selection systems
 - Basic system 4 4
 - 2005
 - 2006

Five-hour training data

Evaluation: Blizzard Challenge

□ Speech Recognition

Comparison on common datasets has been improving the core technology, e.g., DARPA, NIST

□ Speech Synthesis

It is necessary to compare speech synthesis techniques on common datasets

Blizzard Challenge 2005 and 2006

Results of Blizzard Challenge 2005

ARCTIC set (one hour training data)

The Software

Modified HTK (HTS) + SPTK

Modifications to HTK:

- Stream-dependent context clustering
- State output probability for F0 modeling
- State duration modeling and clustering

HMM-based Speech Synthesis System (HTS) (http://hts.ics.nitech.ac.jp)

Overview of This Talk

- Basic Techniques
 - Vocoding technique
 - Speech Parameter generation algorithm
 - F0 pattern modeling
- Recent improvements and evaluation
- □ Relation to the unit selection approach
- □ Flexibility of the approach
 - Speaker adaptation (mimicking voices)
 - Speaker Interpolation (mixing voices)
 - Eigenvoices (producing voices), etc.

Unit selection

Unit Selection Based on Clustering

Comparison between Two Approaches

Unit selection	HMM-based	
Clustering (possible use of HMM)	Clustering (use of HMM)	
Multi-template of waveform	Statistics ⇒ small footprint	
Single tree for waveform (possible use of additional trees for prosody prediction)	Multiple tree for Spectrum, F0 duration	
Advantage: ■ Waveform concatenation ⇒ high quality speech	Disadvantage:	
Disadvantage: • Discontinuity • Hit or miss	Advantage: • Smooth • Stable	
• Fixed voice	Various voices	

Overview of This Talk

- Basic Techniques
 - Vocoding technique
 - Speech Parameter generation algorithm
 - F0 pattern modeling
- □ Recent improvements and evaluation
- □ Relation to the unit selection approach
- □ Flexibility of the approach
 - Speaker adaptation (mimicking voices)
 - Speaker Interpolation (mixing voices)
 - Eigenvoices (producing voices), etc.

What We Can Do?

- □ Emotional speech synthesis
- □ Speaker adaptation (mimicking voices)
- □ Speaker interpolation (mixing voices)
- □ Eigenvoices (producing voices)
- □ Multilingual speech synthesis
- □ Singing voice synthesis
- □ Audio-visual speech synthesis
- □ Human motion synthesis

Emotional Speech Synthesis

text	neutral	angry
「授業中に携帯いじってんじゃねえよ! 電源切っとけ!」 "Don't touch your cell phone during a class! Turn off it!"	()	
「ミーティングには毎週参加しなさい!」 "You must attend the weekly meeting!"		

trained with 200 utterances

Speaker Adaptation (mimicking voices)

MLLR-based adaptation

- w/o adaptation (initial model)
- Adapted with 4 utterances
- Adapted with 50 utterances
- Speaker-dependent model

Speaker Interpolation (mixing voices)

Linear combination of two speaker-dependent models

Voice Morphing

Two voices:

Four voices:

Eigenvoices (producing voices)

Click here for a demo

Multilingual Speech Synthesis

- Japanese Latest system
- American English
- Chinese (Mandarin) (by ATR)
- Brazilián Portuguese (by Nitech, and UFRJ)
- European Portuguese (by Nitech, Univ of Porto, and UFRJ)
- Slovenian () (by Bostjan Vesnicer, University of Ljubljana, Slovenia)
- Swedish (by Anders Lundgren, KTH, Sweden)
- German (by University of Bonn, and Nitech)
- Korean (by Sang-Jin Kim, ETRI, Korea)
- Polish, Slovak, Finnish, Arabic, Farsi, Polyglot, etc.

Singing Voice Synthesis

Audio-Visual Speech Synthesis (Pixel-based)

Audio-Visual Speech Synthesis (Model-based)

Click here for a demo by Tamura, et al., Titech, Eurospeech99

Human Motion Synthesis and Others

<u>Click here</u> for various demos by Prof Kobayashi's group at Titech

Small-Foot Print Synthesizer

- Acoustic model size < 100KB</p>
- 0.1 Real Time

- Sample 1
- Sample 2
- Sample 3
- Sample 4
- Sample 5

In A Dialog System

- □ User:「バーカ!」"You Fool!"
- □ **Agent**:「何よ!馬鹿って言う方が馬鹿なのよ!」 "What? Who slanders others is a real fool!"

Summary

HMM-based Approach to Flexible Speech Synthesis

- □ Simultaneous modeling of spectrum, F0, and duration
- □ Provide flexibility: various voices, speaking styles, emotional expressions, etc.

A tool for constructing spoken dialogue systems