An HMM-Based Approach to
Flexible Speech Synthesis

Kelichi Tokuda
Nagoya Institute of Technology




Towards Human-like Talking Machines

0 For realizing natural human-computer
Interaction, speech synthesis systems are

required to have an ability to generate Speech
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Corpus-Based Speech Synthesis

0 Unit selection approach

High quality speech can be synthesized using
waveform concatenation algorithms.

To obtain various voices, a large amount of
speech data Is necessary.

0o HMM-based approach
Generate speech parameters from statistics.

Voice quality can easily be changed by
transforming HMM parameters.
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System Overview
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Overview of This Talk

0 Basic Techniques
Vocoding technique
Speech Parameter generation algorithm
FO pattern modeling

0O Recent improvements and evaluation

0 Relation to the unit selection approach

0 Flexibility of the approach
Speaker adaptation (mimicking voices)
Speaker Interpolation (mixing voices)
Eigenvoices (producing voices), etc.
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Overview of This Talk

O
= Vocoding technique
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Source-Filter Model
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D(z) should be defined by the state output
vector of HMM, e.g., mel-cepstrum, Isp’s




_—
Synthesis Filter Model
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Objective Function

¢ = arg max P(x|c)

r = [:1:(0)? x(l),...,x(N—l)]’
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Evaluation in Speech Recognition
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MLSA Filter
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Features of MLSA Filter

O Filter coefficients given by mel-cepstrum

0 Sufficient approximation accuracy
= maximum spectral error 0.24dB
0 Guaranteed stability

o Computationally efficient
= O(M) multiply-add operations a sample




_—-—m—— .
Vocoded Speech Samples
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Overview of This Talk

O

Speech Parameter generation algorithm
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System Overview (only spectrum part)
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Hidden Markov Model: HMM
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Output Probability of HMM
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Speech Parameter Generation

For given HMM )\, determine a speech parameter vector
Nl g 5
sequence O = |o0] ,0,,...,01| Which maximizes
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Q
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Determination of State Durations

P(QM)=H p, (d;)

Standard HMM = p.(d.) : geometric distribution

<

Gaussian with mean m, and variance o’

d=m, 1=12,..., K
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Speech Parameter Generation

For given HMM )\, determine a speech parameter vector
Nl g 5
sequence O = |o0] ,0,,...,01| Which maximizes

P(O[N) = ) PO[Q,NP(Q|N
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Without Dynamic Feature

/sil/ /al [i/ /sil/

O becomes a sequence of mean vectors.
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Integration of Dynamic Feature
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Solution for The Problem

By setting
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Generated Speech Parameter
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Generated Spectra
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Effect of Dynamic Features
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Overview of This Talk

O

= FO pattern modeling




HMM-Based Speech Synthe5|s System

Context Dependent
Duration Models

Context Dependent
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Observation of Fo0
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MSD-HMM
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MSD-HMM for F0 Modeling

HMM for FO

weight
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State Output Vector

Spectral Part < Ac, > Stream 1 (Continuous Probability Distribution)

X/, x Stream 2 (Multi-space Probability Distribution)

FO Part < X; , azf Stream 3 (Multi-space Probability Distribution)

X/, x, Stream 4 (Multi-space Probability Distribution)




Context Clustering

Is right phoneme vowel? Is left phoneme plosive?

Y N Y N
Is left phoneme nasal?
A
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Context Clustering: Factors

{preceding, current, succeeding} phoneme

Position of current phoneme in current syllable

Number of phonemes at {preceding, current, succeeding} syllable
Accent of {preceding, current, succeeding} syllable

Position of current syllable in current word

Number of {preceding, succeeding} stressed syllables in current phrase
Number of {preceding, succeeding} accented syllables in current phrase
Number of syllables {from previous, to next} stressed syllable

Number of syllables {from previous, to next} accented syllable

Vowel within current syllable

Guess at part of speech of {preceding, current, succeeding} word
Number of syllables in {preceding, current, succeeding} word

Position of current word in current phrase

Number of {preceding, succeeding} content words in current phrase
Number of words {from previous, to next} content word

Number of syllables in {preceding, current, succeeding} phrase
Position in major phrase

ToBI endtone of current phrase

OO0 000000 O0OO0OoOO0oOoOo0OQ0oQg



Context Clustering: HMM Structure

State Duration
Model

HMM
for Spectrum
and FO Q

Decision Tree Decision Tree
for for
Spectrum State Duration Model
Decision Tree
for
FO
. J




Tree for Spectrum (15t state)

voiced

NO YES

NO YE

S
jaw_wide
vowel

L_jaw_wide ums unvoi R _unvoiced front R _accen t
(L VOIced) ( vowel ) ( g L _silence xplosiv fricative vowel pause_0

0 Questions about phonetic attributes
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Tree for FO (15 state)

voiced

NO YES

fricative R_accen t
pause 0

NO YES NO YES

NO YES NO

YES YES

@ semivowel ) (semivowel

0 Questions about linguistic attributes
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Tree for State Duration

NO YES

YES
NO YES

O Linguistic questions for pause
O Phonetic questions for speech



Generated FO
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Effect of Dynamic Feature

Subjective Evaluation Result Dynamic feature
(Preference Score) of spectrum
with without

: with 91.3% « | 37.5% «
Dynamic feature

of FO

without | 35.8% « | 11.8% «

INSTHEEEIC, BRI DEIGEEDNAIEED ]
“Chiisana unagiyani, nekkinoyouna monoga minagiru”
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Overview of This Talk

O

0O Recent improvements and evaluation
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Recent Improvements

O Introduction of “hidden semi-Markov models

o STRAIGHT vocoding

O Parameter generation considering global
variance (GV)

= Now, It IS competitive to state-of-the-art unit
selection systems

Basic system « ¢ } SIea

2005 § @ @ ¢ ¢ training data

2006 g .| Five-hour
training data
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Evaluation: Blizzard Challenge

O Speech Recognition

Comparison on common datasets has been
Improving the core technology, e.g., DARPA,
NIST

O Speech Synthesis

It IS necessary to compare speech synthesis
technigues on common datasets

——>|Blizzard Challenge 2005 and 2006




Results of Blizzard Challenge 2005

ARCTIC set (one hour training data)

Score (MOS)

Opinion

Natural

HMM-based

Natural
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HMM-based

speech
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Natural

HMM-based

speech /
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US undergraduates
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The Software

Modified HTK (HTS) + SPTK

Modifications to HTK:

= Stream-dependent context clustering
= State output probability for FO modeling
= State duration modeling and clustering

HMM-based Speech Synthesis System (HTS) (http://hts.ics.nitech.ac.jp)



http://hts.ics.nitech.ac.jp/
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0 Relation to the unit selection approach
L]



Unit selection
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Target cost
Concatenation cost



Unit Selection Based on Clustering

Target cost
Concatenation cost
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Comparison between Two Approaches

Unit selection HMM-based

Clustering (possible use of HMM) Clustering (use of HMM)

Multi-template of waveform Statistics = small footprint

Single tree for waveform Multiple tree for Spectrum, FO
(possible use of additional trees for | duration
prosody prediction)

Advantage: Disadvantage:
e \Waveform concatenation e Vocoder-based
= high quality speech = buzzy
Disadvantage: Advantage:
e Discontinuity e Smooth
e Hit or miss e Stable

e Fixed voice e Various voices
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Overview of This Talk
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0 Flexibility of the approach
Speaker adaptation (mimicking voices)
Speaker Interpolation (mixing voices)
Eigenvoices (producing voices), etc.
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What We Can Do?

Emotional speech synthesis

Speaker adaptation (mimicking voices)
Speaker interpolation (mixing voices)
Eigenvoices (producing voices)
Multilingual speech synthesis

Singing voice synthesis

Audio-visual speech synthesis

Human motion synthesis

O O O O O O O 0O
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Emotional Speech Synthesis

text neutral angry

EED(ZEFLVC>TALYRAL!
BRI &I ! ]

“Don’t touch your cell phone during a ¥ *
class! Turn off it!”
[S—FT 42T ICIEEASMLES !
¥ <

“You must attend the weekly meeting!”

trained with 200 utterances




Speaker Adaptation (mimicking voices)
MLLR-based adaptation

e
o=l g
data

>

kSpeaker-independentj adaptation \_ Adapted model .

® w/0 adaptation (initial model) «
m Adapted with 4 utterances  «
®m Adapted with 50 utterances «
B Speaker-dependent model g




Speaker Interpolation (mixing voices)

Linear combination of two speaker-dependent models

\_ Model A . \_ Model B V.
KInterpolated modeI/
A: 1.00 0.75 0.50 0.25 0.00
a a W N oY

B: 0.00 0.25 0.50 0.75 1.00



Voice Morphing

Two voices:
J Ao B

A CEEEEEEEEB |«

Four voices:

Malel Femalel

Female?Z MaleZ



/Eigenvoices (producing voices)

Speaker dependent HMM sets
Speaker 1 Speaker 2 Speaker S

~— ~— ——

J/ J J

( Su[ivlctor {i{go ( St;vectorb’ )/
‘Mean Calculationl — ‘ PCA '
a o A

(w0 [ Ce]) - Ce®)],

Meanvector Elgenvectors

J

\ Click here for a demo




Multilingual Speech Synthesis

Japanese iz #: / _

American English #:  #: #: 4z 4
Chinese (Mandarin) (by ATR) #:
Brazilian Portuguese (by Nitech, and UFRJ)

European Portuguese :
(by Nitech, Univ of Porto, and UFRJ)

Slovenian *:

(by Bostjan Vesnicer, University of Ljubljana, Slovenia )
Swedish *: *:

(by Anders Lundgren, KTH, Sweden)

German (by University of Bonn, and Nitech)
Korean (by Sang-Jin Kim, ETRI, Korea) " ":

Polish, Slovak, Finnish, Arabic, Farsi, Polyglot; etc.



Singing Voice Synthesis
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Singing voice for
any piece of music

Musical score
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Singing voice database

Trained HMMSs




Audio-Visual Speech Synthesis (Pixel-based)

- real image
PCA coefficients
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reconstructed image -
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Audio-Visual Speech Synthesis (Model-based)
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‘ Click here for a demo
w ] by Tamura, et al., Titech,
Eurospeech99
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Human Motion Synthesis and Others

Click here for various demos
by Prof Kobayashi’s group at Titech



http://www.kbys.ip.titech.ac.jp/yamagishi/Demo-html/demo.html

Small-Foot Print Synthesizer

Acoustic model size < 100KB
0.1 Real Time
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In A Dialog System

0 User: [7\—#!1] "You Fool!”
o Agent: Tal&k ! EE-STESANERELZDK! ]
“What? Who slanders others is a real fool!”





—
Summary

HMM-based Approach
to Flexible Speech Synthesis

o Simultaneous modeling of spectrum, FO, and
duration

O Provide flexibility: various voices, speaking
styles, emotional expressions, etc.

A tool for constructing spoken dialogue systems
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