HIDDEN SEMI-MARKOV MODEL BASED SPEECH SYNTHESIS

Authors: Heiga ZEN †
Keiichi TOKUDA †
Takashi MASUKO ††
Takao KOBAYASHI ††
Tadashi KITAMURA †

Presenter: Heiga ZEN †

† Nagoya Inst. of Tech. †† Tokyo Inst. of Tech.
Outline

Introduce HSMM instead of HMM into HTS

- Summarize unit selection and HMM-based approach
- System overview of the HTS
 - Training part
 - Synthesis part
 - Problems of current system
- Solution \(\Rightarrow \) Introduce HSMM into HTS
- Experiments
- Conclusion & Future works
- Demonstrations
Corpus-based speech synthesis system

Unit selection and concatenation (e.g., CHATR)
- High quality (sometimes discontinuous)
- Require large memory and disk space
- Difficult to convert their voice characteristics

Speech synthesis from HMMs themselves (e.g., HTS)
- Vocoded speech (smooth and stable)
- Small footprint (less than 1MB)
- Easy to convert its voice characteristics
System overview of HTS

Training part

- Speech signal
- F0 Extraction
- Mel-cepstral Analysis
- F0
- Mel-cepstral Coefficients
- Training of HMM
- Label

Synthesis part

- TEXT
- Text Analysis
- Parameter Generation from HMM
- Label
- F0
- Mel-cepstral Coefficients
- Excitation Generation
- MLSA Filter
- SYNTHESIZED SPEECH

Context-Dependent HMMs and Duration Models
Training part of HTS

- Phoneme Alignment
- Training data
- Context Independent

- Copy CI-HMMs to CD-HMMs
- Embedded Reestimation

- Tree-based clustering (F0)
- Tree-based clustering (Spectra)

- Context Dependent

- Embedded Reestimation
- Duration model generation
- Tree-based clustering (Duration)

Context-Dependent HMMs and Duration Models

- Spectra
- F0
- Duration
Synthesis part of HTS

Parameter Generation from HMM

Sentence HMM

State Durations

State Duration Distributions

Mel-cepstrum

F0

Excitation Generation

MLSA Filter

SYNTHESIZED SPEECH
Inconsistencies (1)

Last iteration of embedded reestimation

HMMs \(\rightarrow\) Estimate \(\rightarrow\) Duration Models

\(\alpha_t(i)\) : Fw. prob.
\(\beta_t(k)\) : Bw. prob.

Consistent

Inconsistent !
Inconsistencies (2)

Training ⇒ **Without** explicit duration model
Synthesis ⇒ **With** explicit duration model

Different kind of generative model!
Inconsistency between training and synthesis part!
Hidden semi-Markov model (HSMM)

- HMM + explicit duration model \Rightarrow HSMM

- HSMM as acoustic models for ASR
 [Russel & Moore;'85, Levinson;'86, Rabinar;'90]

- Computational cost is high
 \Rightarrow Not used in state-of-the-art ASR systems

 For HTS, computational cost is not so high!

- Introduce HSMM into HTS (training part)
 \Rightarrow Estimate model params. with explicit dur. models

Inconsistencies can be solved!
Training procedures

HMM-based system

Training data

Initialization and Reestimation

Copy CI-HMMs to CD-HMMs

Embedded Reestimation

Tree-based clustering (Spectra)

Tree-based clustering (F0)

Tree-based clustering (Duration)

Context-Dependent HMMs and Duration Models

HSMM-based system

Training data

Initialization and Reestimation

Copy CI-HMMs to CD-HMMs

Embedded Reestimation

Tree-based clustering (Spectra)

Tree-based clustering (F0)

Tree-based clustering (Duration)

Context-Dependent HSMMs
Experimental conditions

| Training data | ATR Japanese speech database B-set
	Speaker MHT, MSH, FYI, and FTK first 450 utterances
Test data	Remaining 53 utterances
Sampling rate	16 kHz
Window	25-ms Blackman window
Frame rate	5-ms
Spectral analysis	24-order Mel-cepstral analysis
Dynamic feature	calculated from ±1 frames
Feature vector	$c(0) \sim c(24)$, log $F0$, and its Δ, $\Delta\Delta$
Topology	5-state left-to-right HMM / HSMM
	Spectrum : single Gaussian distribution
	$F0$: multi-space probability distribution
Constructed Models

#leaf-nodes after tree-based context clustering

<table>
<thead>
<tr>
<th>speaker</th>
<th>model</th>
<th>Spec.</th>
<th>F_0</th>
<th>Dur.</th>
</tr>
</thead>
<tbody>
<tr>
<td>FTK</td>
<td>HMM</td>
<td>956</td>
<td>1392</td>
<td>404</td>
</tr>
<tr>
<td></td>
<td>HSMM</td>
<td>963</td>
<td>1427</td>
<td>343</td>
</tr>
<tr>
<td>FYM</td>
<td>HMM</td>
<td>870</td>
<td>1365</td>
<td>368</td>
</tr>
<tr>
<td></td>
<td>HSMM</td>
<td>874</td>
<td>1360</td>
<td>343</td>
</tr>
<tr>
<td>MHT</td>
<td>HMM</td>
<td>969</td>
<td>1133</td>
<td>338</td>
</tr>
<tr>
<td></td>
<td>HSMM</td>
<td>969</td>
<td>1150</td>
<td>313</td>
</tr>
<tr>
<td>MYI</td>
<td>HMM</td>
<td>728</td>
<td>1234</td>
<td>377</td>
</tr>
<tr>
<td></td>
<td>HSMM</td>
<td>737</td>
<td>1217</td>
<td>361</td>
</tr>
</tbody>
</table>

#model-parameters were almost the same
Subjective listening test results

<table>
<thead>
<tr>
<th>Test type</th>
<th>Paired comparison test</th>
</tr>
</thead>
<tbody>
<tr>
<td>Subjects</td>
<td>8 graduate students</td>
</tr>
<tr>
<td>Test sentences</td>
<td>20 test sentences were chosen at random</td>
</tr>
</tbody>
</table>

![Graph showing test results for different models (HMM and HSMM) with 95% confidence intervals.](image-url)
Conclusion

Introduce HSMM instead of HMM into HTS

- HMM + explicit duration model \Rightarrow HSMM
- Spec., F0 & Dur. were reestimated simultaneously
- Solve some inconsistencies in the current system
- Synthetic speech quality \Rightarrow Equal or better

Future works

- Try other distributions for duration modeling (Gamma, logarithmic Gaussian, nonparametric, etc.)
- Make system more consistent⋯
Synthesized speech samples

Japanese

"Chiisana unagiyani nekkino yona monoga minagiru"
HMM 🎧 HSMM 🎧

"Dorobo demo haittakato isshun bokuwa omotta"
HMM 🎧 HSMM 🎧

"Tokaidewa deau hitono hotondoga misiranu hitode aru"
HMM 🎧 HSMM 🎧

English (trained from CMU ARCTIC database)

"I remembered the red wine of the Italian rancho, and shuddered inwardly."
HMM 🎧 HSMM 🎧

"I said, and dismissed the matter as not worth thinking about."
HMM 🎧 HSMM 🎧

"Then came my boy code."
HMM 🎧 HSMM 🎧
Thanks !