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Typical LVCSR framework Output probability of an observation o for HMM A Relation to covariance modeling techniques

P(Wc| q,}) shoud be normalized by Kyg: Speech parameter generation from HMM [Tokuda;'00]

: ST Temporal inverse covariance (precision) matrix R
Feature vector: MFCC + AMFCC Plo|)) = Z P(o| q,\)P(q |\ C ‘ )\ § : P C ‘ q, )\ (q ‘ )\) = Generate obs. vec. seq. maximizing its output prob. P (P ) q
Acoustic model: context-dependent HMM Without dynamic feature constraints
Language model: word N-gram P(o|g,\) =N (O‘NQ:Zq) (single Gaussian, 3MT') Omax = argmax P (o | g,A) | @ - 9Ps- vec. sequence
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Limitations of the HMM for modeling speech - . . P(c|g,A) = 1 - P(We|q,)\) With dynamic feature constraints
(1) Constant statistics within an state o Pa | e O : Observation (3M/X 1) —1 !
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NEAN oo | | -~ - Determination of Gaussian sequence q . d as Product of G - PoG) [Sim et.al"'04
. HMM = step-wise statistics Dynamic feature = computed from static features T of 5 . L . . viewed as Product of Gaussians (PoG) [Sim et.al;'04]
variance 12 f = A modified Viterbi algorithm based on recursive
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