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ABSTRACT
This paper describes the Blizzard Machine Learning Challenge
(BMLC) 2017, which is a spin-off of the Blizzard Challenge. The
annual Blizzard Challenges 2005–2017 were held to better under-
stand and compare research techniques in building corpus-based
text-to-speech (TTS) systems on the same data. The series of Bliz-
zard Challenges has helped us measure progress in TTS technology.
However, to get competitive performance, a lot time has to be spent
on skilled tasks. This may make the Blizzard Challenge unattractive
to machine learning researchers from other fields. Therefore, we
recommend that the BMLC not involve these speech-specific tasks
and that it allow participants to concentrate on the acoustic modeling
task, framed as a straightforward machine learning problem, with a
fixed dataset. In the BMLC 2017, two types of datasets consisting
of four hours of speech data suitable for machine learning problems
were distributed. This paper summarizes the purpose, design, and
whole process of the challenge and its results.

Index Terms— Speech synthesis, machine learning, evaluation,
listening test, Blizzard Challenge

1. INTRODUCTION

A text-to-speech (TTS) system generates intelligible, natural-
sounding artificial speech for a given input text. Because computing
performance has steadily improved, TTS systems have evolved
from “rule-based” systems, which connect speech units adjusted
manually, to “corpus-based” systems like ones for unit-selection
synthesis, which selectively connect suitable speech units extracted
from a large-scale speech database [1]. However, the unit-selection-
based speech synthesis system restricts the output speech to the same
style as that in the original recordings because no modifications to
the selected pieces of recorded speech are normally done. Therefore,
a unit-selection-based speech synthesis system that can generate a
huge variety of high-quality speech can only be constructed if a
large-scale speech database containing high-quality speech is built.
Statistical speech synthesis based on machine learning has been
drawing attention as a means of achieving it [2].

Statistical speech synthesis is a means of “mapping” (i.e., repre-
senting a map) of speech waveforms from text on the basis of a sta-
tistical model. However, a statistical model for directly predicting a
speech waveform from text is difficult to construct. Accordingly, for
conventional statistical speech synthesis, mapping a speech wave-
form from text can be divided into three steps: (i) estimating lin-
guistic features expressed as phonemes, parts of speech, words, etc.
from text (called “text analysis”); (ii) estimating acoustic features,
which express characteristics of a speech waveform, from linguis-
tic features; and (iii) generating a speech waveform from acoustic

features. For step (ii), the process is referred to as “acoustic model-
ing,” namely, predicting acoustic features from linguistic features.
Good examples of architectures suitable for modeling time-series
data are available for acoustic modeling, and efficient training al-
gorithms have been developed. For those reasons, hidden Markov
models (HMMs) are widely utilized, and statistical speech synthe-
sis based on HMMs (called “HMM-based speech synthesis”) have
become widely used as a standard speech-synthesis technique [3].

In various fields, methods utilizing “deep learning” have demon-
strated high performance. In the field of statistical speech synthe-
sis, the quality of synthesized speech can reportedly be improved
by switching the acoustic model from a HMM to a “deep neural net-
work” (DNN) [4, 5, 6, 7]. Acoustic models that can directly generate
speech waveforms from linguistic features (such as WaveNet [8] and
SampleRNN [9]) have been proposed—in other words—an integra-
tion of steps (ii) and (iii). A method for acoustic modeling a speech
waveform without using acoustic features is available; accordingly,
degradation in speech quality can be avoided using a vocoder, which
represents one of the bottlenecks in the flow of HMM-based speech
synthesis. Furthermore, investigations on “end-to-end styles,” which
predict speech waveforms directly from text, have started [10, 11, 12,
13]. These methods based on deep learning have been implemented
by taking advantage of the knowledge of not only researchers in the
field of speech synthesis but also researchers in the field of machine
learning. From now on, the quality of synthesized speech could
conceivably be improved by applying technologies in the field of
deep learning. However, constructing a TTS system requires having
speech-specific tasks (such as updating the lexicon, removing inap-
propriate audio files, segmenting and aligning audio files, detecting
alignment errors, etc.), and that necessity might discourage machine
learning researchers from moving into this field.

The annual Blizzard Challenges 2005–2017 were held to bet-
ter understand and compare research techniques in building corpus-
based TTS systems on the same data [14]. At annual Blizzard Chal-
lenges held up until now, challenges using English, Mandarin, Indian
languages, and audiobooks were set as training data. The series of
Blizzard Challenges has helped us measure progress in TTS tech-
nology [15]. However, participation in Blizzard Challenges up un-
til now has required a working knowledge of the speech-synthesis
field. Therefore, we recommend that the Blizzard Machine Learn-
ing Challenge (BMLC) not involve these speech-specific tasks and
that it allow participants to concentrate on the acoustic modeling
task, framed as a straightforward machine learning problem, with
a fixed dataset. The BMLC aims to encourage development in the
speech-synthesis field and to promote entry of new researchers from
the field of machine learning into that field. At BMLC 2017 [16],
data concerning children’s audiobooks distributed at Blizzard Chal-
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Fig. 1. Tasks of the BMLC 2017. Solid boxes and arrows represent the processes of the organizers, and dashed boxes and arrows represent
the processes of participants. The speech-specific tasks were done by the organizers. Participants could concentrate on the acoustic modeling
task.

lenge 2016 [17] were pre-processed so as to be suitable for machine
learning problems and for distribution to participants. The partici-
pants constructed acoustic models based on rules that were judged
to be impartial from the viewpoints of both speech-synthesis re-
searchers and machine-learning researchers. The quality of synthe-
sized speech was also evaluated by the organizers of the challenge
using subjective-evaluation tests.

The rest of this paper is organized as follows. Section 2 de-
scribes the tasks and datasets for the BMLC 2017. Section 3 presents
the benchmark and submitted systems. The listening tests conditions
and results are given in Section 4, followed by discussion and future
plans described in Section 5. Concluding remarks are presented in
Section 6.

2. BLIZZARD MACHINE LEARNING CHALLENGE

2.1. Tasks

This first version of the BMLC is posed as a pure and simple ma-
chine learning problem. The rules are intended to create a level
playing field between entries for both speech synthesis experts and
machine learning experts alike. Therefore, expert interventions into
the provided data are not allowed. In the BMLC 2017, the two En-
glish spoke (ES) tasks were organized in the form of 2017-ES1 and
2017-ES2.

2017-ES1: prediction of acoustic features from linguistic features.
Frame-level sequence pairs of acoustic features and linguistic
features are distributed by the organizers. Participants must
train a model to predict acoustic features from linguistic fea-
tures.

2017-ES2: prediction of speech waveforms from linguistic features.
Pairs of speech waveforms and linguistic features are dis-
tributed by the organizers. Participants must train a model
to predict speech waveforms directly from linguistic features.

Figure 1 summarizes the tasks of the BMLC 2017. The main guide-
lines to participate with an entry were as follows:

• Participants are not allowed to submit both 2017-ES1 and
2017-ES2 tasks, thereby enabling the number of participants
to be controlled.

• Participants are not allowed to use external data in any way.
External data are defined as data of any type that are not part
of the provided dataset.

• Participants may automatically apply transforms such as nor-
malization or quantization to any of the provided data.

• Participants are not allowed to add and remove the linguistic
features.

• In the 2017-ES2 task, participants must not extract additional
features, e.g, F0 and cepstrum, from the speech waveforms.

• In the 2017-ES2 task, quantizing and downsampling the
speech waveforms are permitted.

• Participants need to predict acoustic features (2017-ES1) or
speech waveforms (2017-ES2) for a test set of previously-
unseen linguistic features.

2.2. Datasets

The data were provided by Usborne Publishing Ltd. and are from
a commercial product range of children’s audiobooks. All speech
data were recorded by one native British English female professional
speaker. Around five hours of material was made for last year’s Bliz-
zard Challenge 2016. Each of the 50 books is rated by Usborne for
reading ages (mainly for children 4, 5, or 6 years old, with a hand-
ful of books rated as “18 months+”). Genres include classic chil-
dren’s stories (e.g., The Three Little Pigs), simplified and abridged
versions of Shakespeare (e.g., Romeo and Juliet), and factual books
(e.g., Knights and Castles). A sentence-level segmentation was cre-
ated by Toshiba’s Cambridge Research Laboratory and Innoetics. At
BMLC 2017, datasets 2017-ES1 and 2017-ES2, which are suited to
machine learning for statistical speech synthesis using the Blizzard
Challenge 2016 data, were prepared.

2.2.1. Waveforms

Speech data were provided as files of sentence units under a sup-
posed sampling frequency of 44.1 kHz, quantization of 16 bits, and
monaural Waveform Audio File Format (WAVE). The lengths of si-
lence at the beginning and end of the speech waveform were adjusted



to suitable values to model silence of the appropriate length. More-
over, small noise values were added in the case of a great number of
successive “0”s to enable estimation of acoustic features.

2.2.2. Acoustic features

For general speech synthesis based on DNNs, DNNs are applied
to regression problems (namely, predicting acoustic features from
linguistic features). However, estimating acoustic features from
a speech waveform requires specialist knowledge of the speech-
synthesis field. Accordingly, acoustic features were prepared in
advance by the organizers for the 2017-ES1 task. Acoustic features
were assumed using log fundamental frequency (F0), mel-cepstral
coefficients [18], and mel-cepstral analysis aperiodicity measures
extracted from a speech waveform every 4.989 ms (220 samples
/ 44,100 samples). Voting results concerning F0 (estimated using
RAPT [19], SWIPE’ [20], and REAPER [21]) were taken as F0 of
acoustic features. Values of voiced parts were linearly interpolated
for unvoiced parts of F0. Information concerning voiced and un-
voiced parts was respectively expressed as “1” and “0.” A spectral
envelope and aperiodicity were estimated using WORLD [22]. The
voting F0 was used in that estimation. The spectral envelope and
aperiodicity were converted to 50- and 25-order mel-cepstral co-
efficients using SPTK [23]. The acoustic features were composed
of a total of 77 dimensions, namely, log F0 (acquired by linearly
interpolating values in unvoiced parts), the voiced and unvoiced
information, and the 50- and 25-order mel-cepstral coefficients.
Binary files for Linux and macOS were distributed to allow the par-
ticipants to generate speech waveforms from the acoustic features.

2.2.3. Linguistic features

Specialist knowledge in the speech-synthesis field is needed for both
linguistic features and acoustic features. Accordingly, linguistic fea-
tures estimated by the organizers were provided. First, text was ana-
lyzed by Festival [24] using the CMU Pronouncing Dictionary [25].
The results of the text analysis were converted to linguistic features
of HTS-2.3.1 demo script format [26]. The HTS-2.3.1 demo script
format includes linguistic features that depend on the state of a hid-
den Markov model (HMM), i.e., the position of the current HMM
state in the phoneme and the position of the current frame in the
HMM state. Linguistic features depending on the state of a HMM
were removed to reduce HMM dependency. The resulting linguistic
features were composed of a total of 687 dimensions. The linguistic
features were normalized to be within 0.0–1.0 based on their mini-
mum and maximum values in the training data. The order of features
was randomized to prevent expert TTS researchers from trying to re-
verse engineer them.

The speech waveforms, acoustic features, and linguistic fea-
tures consisted of sample-level, frame-level, and phoneme-level,
respectively, with different time-levels. A general DNN-based
speech-synthesis system is unable to train a DNN using different
time-level feature sequences. Accordingly, in 2017-ES1, acoustic
feature sequences in the frame level must have a corresponding
relationship with a linguistic feature sequence in the phoneme level.
The correspondence between the acoustic feature sequence in the
frame level and the linguistic feature sequence in the phoneme level
(i.e., phoneme alignment) was estimated, and linguistic features in
the frame level were thereby provided for both tasks. In 2017-ES2,
because the frame shift had a fixed length (4.989 ms), the linguistic
feature sequence could be easily converted from the frame level
to the sample level. The HMM-based acoustic model was used to

estimate phoneme alignment of acoustic features. A multi-stream
multi-space probability distribution hidden semi-Markov model
(MSD-HSMM) [27, 28, 29, 30, 31] with five states and left-to-right
context dependency and without skip transitions was used as the
acoustic model. Each state output probability distribution was com-
posed of a spectrum, F0, and aperiodicity streams. The spectrum and
aperiodicity streams were modeled using single multi-variate Gaus-
sian distributions with diagonal covariance matrices. The F0 stream
was modeled using an MSD consisting of a Gaussian distribution for
voiced frames and a discrete distribution for unvoiced frames. State
durations were modeled using a Gaussian distribution. The HTS
was used for constructing the HMM-based acoustic model [26].
The linguistic and acoustic features were time-aligned frame-by-
frame by using the trained full-context MSD-HSMM. Moreover, the
trained MSD-HSMM was used to predict the phoneme duration of
the development set and the test set.

2.2.4. Data pruning

The children’s audiobooks used as training data were created for
commercial purposes. The data prepared for statistical-model train-
ing were not ideal, e.g., the training data contained mismatches be-
tween speech waveform and text. These mismatches were caused by
the misreading of a text or words that do not exist in the text, i.e.,
description of a book or onomatopoeia. Furthermore, because the
children’s audiobooks were read emphatically, emotionally, etc., a
lot of expressive speech data were included. Phoneme-alignment er-
rors are easily generated for this kind of speech data. Moreover, such
errors have a negative effect on statistical-model training. Accord-
ingly, phoneme alignment was estimated using a monophone MSD-
HSMM, and specific speech data were removed from the dataset:
speech data in which the number of phonemes with a significant
difference between the estimated duration of phonemes and the av-
erage duration of phonemes is greater than or equal to a threshold
value. About four hours of speech data (4651 files) were used as the
datasets for BMLC 2017.

3. SYSTEMS

Seven teams registered, and three teams (CMU [32], iFLYTEK Re-
search [33], and USTC-NELSLIP [34]) submitted systems. Accord-
ingly, the BMLC 2017 had three submitted systems along with three
benchmark systems. Each system is briefly explained as follows.

3.1. 2017-ES1 systems

3.1.1. Benchmark system 1

The first benchmark system used a feed-forward neural network
(FFNN) using simple frame-by-frame training [4]. The delta fea-
tures for the acoustic feature are not used because they require
knowledge of the speech-synthesis field. The HTS-2.3.1 demo
script was used, and the FFNN was trained. The architecture of
the FFNN was three hidden layers with 1024 units per layer. The
sigmoid activation function was used in the hidden layers, and the
linear activation function was used in the output layer. The Adam
algorithm [35] was repeatedly executed as the training algorithm for
50 epochs, and the dropout ratio was taken as 0.5. The architecture
and training algorithm was set on the basis of default values of the
HTS-2.3.1 demo script.



3.1.2. Benchmark system 2

The second benchmark system used a single-mixture density net-
work consisting of a feed-forward neural network incorporating tra-
jectory training with global variance (GV) [36, 37, 38]. The archi-
tecture of the single-mixture density network was three hidden layers
with 2048 units per layer. The sigmoid activation function was used
in the hidden layers, and the linear activation function was used in
the output layer. The AdaGrad algorithm [39] was repeatedly exe-
cuted as the training algorithm for 300 epochs, and the dropout ratio
and GV weight were assumed to be 0.5 and 0.001, respectively. The
output features were normalized to have zero-mean unit-variance.

3.1.3. System H

System H used a long short term memory (LSTM) embedding layer
feeding a recurrent highway network [40] with a recurrence of six,
followed by a linear output layer. Each hidden layer had 128 units.
The Adam optimizer, L2 weight regularization, and Glorot weight
initialization were used for training.

3.1.4. System I

System I was composed of two modules, an LSTM recurrent neu-
ral network (RNN)-based acoustic model and a generative adversar-
ial network (GAN) [41] based post-filter for mel-cepstral. The first
part had four hidden layers in this architecture stacked with a feed-
forward layer and three bidirectional LSTM-RNN layers with 1024
units in each layer. The network was trained under a minimum mean
square error criterion using the stochastic gradient descent (SGD) al-
gorithm. The second part had a principal component analysis (PCA)
based GAN post-filter. The details of mel-cepstral were removed
using dimension reduction with PCA and recovered using a GAN.

3.2. 2017-ES2 systems

3.2.1. Benchmark system 3

The third benchmark system used the WaveNet [8]. The waveforms
were down-sampled to 16 kHz and quantized to 8 bits using the
µ-law algorithm. For the architecture of WaveNet, we repeated
10-layer dilation three times as 1, 2, 4, . . . , 512 (forming a dilated
causal convolution layer with a total of 30 layers). The number of
causal-convolution channels, residual channels, and skip channels
were taken as 128, 256, and 256, respectively. The Adam algorithm
was used as the training algorithm.

3.2.2. System G

System G used the WaveNet and bidirectional LSTM. The wave-
forms were down-sampled to 24 kHz and quantized to 10 bits using
the µ-law algorithm. WaveNet with three blocks, each with dilations
1, 2, 4, . . . , 512 was used. The Adam algorithm was used as the
training algorithm. WaveNet conditioned on the short-time Fourier
transform (STFT) amplitude spectra of waveforms was submitted. A
bidirectional LSTM-based network was also trained to predict STFT
amplitude spectra from linguistic features.

4. EVALUATION

4.1. Listening test

A subjective listening test was conducted by the BMLC organiz-
ers. Participants were asked to synthesize many hundreds of test

sentences, of which only a small subset were used in the listening
test. This provided a large amount of material that might be used
in future listening tests and also prevented participants from manu-
ally intervening in synthesis. The evaluation combined the entries
for 2017-ES1 and 2017-ES2 into the single listening test. The lis-
tening test had the following structure, comprising 11 sections each
with seven stimuli—or six in the case of intelligibility—because no
natural recorded semantically unpredictable sentences (SUS) were
available.

Section1–2: A 5-point mean opinion score (MOS) test was con-
ducted to evaluate speaker similarity. In each test, listeners
could play four reference samples of the original speaker and
one synthetic sample. They chose a response that represented
how similar the synthetic speech sounded to the speech in the
reference samples on a scale from 1 “sounds like a totally
different person” to 5 “sounds like exactly the same person.”

Section3–7: A 5-point MOS test was conducted to evaluate natu-
ralness. In each test, listeners heard one sample and chose a
score that represented how natural or unnatural the sentence
sounded on a scale of 1 “completely unnatural” to 5 “com-
pletely natural.”

Section8–11: To evaluate intelligibility, the listeners were asked to
transcribe SUS by typing in the sentence they heard. Listen-
ers were allowed to listen to each sentence only once. The av-
erage word error rate (WER) was calculated from these tran-
scripts.

The organizers used a total of 50 paid native listeners, and each lis-
tener heard one sentence from each system per section. The listeners
took the test in soundproof listening booths using high-quality head-
phones.

4.2. Results

Figures 2, 3, and 4 show the MOS for naturalness, the MOS for
speaker similarity, and the WER of SUS, respectively. In these fig-
ures, the identifying letters represent the following systems.

A: natural speech.

X: 2017-ES1 benchmark system 1.

Y: 2017-ES1 benchmark system 2.

Z: 2017-ES2 benchmark system 3.

H and I: 2017-ES1 submitted systems.

G: 2017-ES2 submitted system.

The plots are color-coded: blue for natural speech, green for 2017-
ES1 systems, and red for 2017-ES2 systems. In Figures 2 and 3,
standard boxplots are presented for the ordinal data, where the me-
dian is represented by a solid bar across a box showing the quartiles;
whiskers extend to 1.5 times the inter-quartile range, and outliers be-
yond this are represented as circles. In Figure 4, bar charts are pre-
sented for the WER interval data. A single ordering of the systems
is used in all plots. This ordering is in descending order of MOS
for naturalness. Note that the ordering is intended only to make the
plots more readable using the same system ordering across all plots
for both tasks and cannot be interpreted as a ranking. In other words,
the ordering does not tell us which systems are significantly better
than others. The numbers n at the bottom of the figures represent the
number of evaluated sentences.

According to Figure 2, system G, which directly predicts the
speech waveform, achieved a higher MOS (naturalness) than that



Fig. 2. MOS for naturalness

Fig. 3. MOS for speaker similarity

achieved by the other speech-synthesis systems. The method for di-
rectly predicting the speech waveform avoids degradation in speech
quality by utilizing a vocoder; thus, that is likely to be the reason it
achieves a high MOS for naturalness. However, benchmark system

Fig. 4. WER of SUS

Z, which also directly predicts the speech waveform, does not attain
a high MOS. The main difference between system G and system Z is
whether or not the system uses acoustic information as intermediate
representation. A combined training for not passing through acoustic
intermediate representation is necessary to follow guidelines. This
result indicates that training WaveNet with only linguistic features is
more difficult than training with acoustic information. In addition,
sufficient GPU resources and training time could not be secured for
configuring benchmark system Z; consequently, the prediction accu-
racy of the model used was inadequate. For training with a model
for directly predicting a speech waveform with high accuracy, se-
cure abundant GPU resources, an efficient training algorithm, and
adequate tuning are necessary.

According to Figure 3, compared to MOS for natural speech,
MOS for “similarity with original speaker” attained by the speech-
synthesis system is lower. Up until now, speech with low similarity
with that of the original speaker has been cited as a weak point of
statistical speech synthesis. Accordingly, a key challenge is to im-
prove the similarity of speech with the original speaker attained us-
ing statistical speech synthesis. System I, which uses a GAN-based
post-filter, achieved a higher MOS for speaker similarity than other
2017-ES1 systems (system H, X, and Y). This result suggests that
the GAN-based post-filter probably improves speaker similarity.

According to Figure 4, compared to other systems, benchmark
system Z obtained significantly low intelligibility (i.e., high WER).
That is because the training of the statistical model is inadequate us-
ing only linguistic features and because the synthesized speech by
that system was ambiguous. The low intelligibility conceivably in-
fluences the low “naturalness” and “similarity with original speaker”
scores attained by benchmark system Z. Meanwhile, benchmark sys-
tem Y, which uses trajectory training considering GV, achieved a
lower WER than benchmark system X, which uses frame-by-frame
training. This result demonstrates that trajectory training consider-



ing GV is useful for training the statistical models used in the DNN-
based speech synthesis.

5. DISCUSSION AND FUTURE PLAN

At BMLC 2017, a challenge focused on a machine-learning prob-
lem was set for statistical speech synthesis. Seven teams registered,
and three teams submitted systems. Although researchers in the
machine-learning field registered for the challenge, they could not
submit a system. Researchers in the machine-learning field might
have discovered that speech synthesis is harder than they thought.
Also, rules to which knowledge of the speech-synthesis field can-
not be applied were imposed; subsequently, the speech-synthesis re-
searchers expressed the opinion that the challenge imposed many
restrictions. It means that the tasks were difficult due to limited train-
ing data (four hours), noisy training data, and limitations on knowl-
edge of the speech-synthesis field. Some systems could not follow
the rules. From now on, we plan to devise rules and tasks that allow
researchers from both fields to participate more easily. Furthermore,
we will endeavor to recruit machine learning researchers and to re-
lease benchmark systems in advance to easily participate. Statisti-
cal speech synthesis research is quickly moving onto an end-to-end
style. Therefore, tasks for the end-to-end style are also planned.

The purpose of speech synthesis research is not only to synthe-
size high-quality speech. Building a framework for freely modeling
and controlling speaking style, expression of emotion, and language
is an important challenge facing research on speech synthesis. To
achieve these purposes, we expect to develop speech-synthesis tech-
nology further by exploiting machine-learning techniques.

6. CONCLUSIONS

This paper presented Blizzard Machine Learning Challenge (BMLC)
2017. At the event, two types of dataset suitable for machine learn-
ing were provided for training acoustic models. According to the
results of the subjective evaluations by the challenge organizers,
the systems using state-of-the-art machine learning approaches
achieved a higher “naturalness” score than that achieved by simple
benchmark systems. In the future, rules will be devised to allow
researchers from the fields of both machine learning and speech
synthesis to participate more easily, and the BMLC will be further
incorporated into the annual Blizzard Challenge.
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