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Speech synthesis approaches

• Rule-based, formant synthesis (~’90s)
Phonetic units are built by hand-crafted rules

• Corpus-based, concatenative synthesis (’90s~)
Concatenate speech units (in acoustic feature or waveform) from a database
• Single inventory: diphone synthesis
• Multiple inventory: unit selection synthesis

• Corpus-based, statistical synthesis (late ’90s~)
Source-filter model + statistical acoustic model
• HMM (hidden Markov model) (1995~)
• DNN (deep neural networks) (2013~)
• WaveNet (2016~)

We were 
working on this



>>



Unit-selection synthesis

・・・・・・

Target cost

Concatenation cost

Whole speech unit database

Selected speech units

When we are lucky: 

When we are unlucky:

Minimize the total cost in runtime
using dynamic programming



Statistical approach to speech synthesis

Air flow

Synthesized
speech

HMM: hidden Markov model
DNN: deep neural network

Text

“Hello”

“Hello”

Estimating the
control parameters

“Hello”
Simulating speech production
(digital filter / WaveNet vocoder)

Speech
Shape of

vocal tract

Volume / Fundamental
frequency (+voicing)

“Hello”

Represented by
control parameters

Controlling the
vocal organs

Text analysis

• Small footprint
• Automatic voice building
• Small language dependency
• Flexibility/controllability



Pros and cons

Unit selection Statistical parametric
Waveform concatenation
 Natural sounding Vocoded buzzy or muffled

Discontinuity, hit or miss Smooth
Work better for larger databases Can work for small databases
Large footprint Small footprint
Fixed voice  fixed style,

fixed emotional expression, etc.
Flexible  speaker adaptation,

speaking style interpolation, etc.

No reason to hesitate to move onto the statistical approach





Solved by neural vocoding, e.g., WaveNet
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The basic problem of speech synthesis

• : texts
• : speech waveforms

• : text to be synthesized 
• : speech waveform

We have a speech database, i.e., 
a set of pairs of texts and corresponding speech waveforms.
Given a text to be synthesized,
what is the speech waveform corresponding to the text?

database
Given

?



Statistical formulation of speech synthesis (1/4)

• Estimating predictive distribution is hard.
 Introduce generative representation ( : model parameters)

• It is difficult to perform integral over auxiliary variables
 Approximate integral by maximizing 

 training

 generation



Statistical formulation of speech synthesis (2/4)

• Usually the generative model is decomposed into sub-modules, e.g.,

: parametric representation of speech waveform 
: linguistic feature for 

: generative model parameter
: acoustic model parameter
: text analysis module parameter

Feature extraction
/waveform generation Acoustic model Text analysis

>>



Linguistic feature
Phoneme (or distinctive feature)

 {preceding, current, succeeding} phonemes 

Syllable
 # of phonemes in {preceding, current, succeeding}  syllable
 {accent, stress} of {preceding, current, succeeding} syllable
 Position of current syllable in current word
 # of {preceding, succeeding} {accented, stressed} syllable in current phrase
 # of syllables {from previous, to next} {accented, stressed} syllable
 Vowel within current syllable, etc.

Word
 Part of speech of {preceding, current, succeeding} word
 # of syllables in {preceding, current, succeeding} word
 Position of current word in current phrase
 # of {preceding, succeeding} content words in current phrase
 # of words {from previous, to next} content word
 Syntactic/dependency information, etc.

Phrase
 # of syllables in {preceding, current, succeeding} phrase, etc.

+Frame-level Duration and positional information

+Speaking styles, emotional expressions, etc.
when we have such tags/lables

()



Statistical formulation of speech synthesis (3/4)

• Decompose the generative model into sub-modules:

ಲ ಽ

 training

 generation

training
 generation





Statistical formulation of speech synthesis (4/4)

• It is difficult to perform integral and sum
 Approximated by step-by-step maximization

: pre-trained text analysis module parameter
 speech feature parameter extraction

 labeling

ಲ

 acoustic model training

 text analysis

 speech parameter generation

waveform generation

Training
Synthesis
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HMM-based speech synthesis system
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Spectral
parameters

Training HMMs

Excitation
parameters

Context-dependent HMMs
& state duration models

Parameter generation
from HMMs
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HMM-based speech synthesis system

TEXT

Text analysis

Training HMMs
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ML estimation of mel-cepstrum:

when is Gaussian process,
is convex with respect to [Fuka92]

Mel-cepstrum-based spectral analysis
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Spectral estimation example
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MLSA filter (1/2) [Fukada ’92]
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MLSA filter (2/2) [Fukada ’92] ,
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• Approximation error < 0.24dB
• O(8M) operations/sample
• Stable filter



HMM-based speech synthesis system
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Hidden Markov model (HMM)
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Spectrum part

Excitation part
(e.g, F0)

Spectral parameters
(e.g., mel-cepstrum, LSPs)

log F0 with V/UV









Structure of state output (observation) vector

Dynamic feature [Furui ’86]



Decision tree-based state clustering [Odell; ’95]

k-a+b

t-a+h

…

…

…

yes

yes

yesyes

yes no

no

no

no

no

R=silence?

L=“gy”?

L=voice?

L=“w”?

R=silence?

C=unvoice?
C=vowel?
R=silence?
R=“cl”?
L=“gy”?
L=voice?…

Sharing the parameter of HMMs in the same leaf node

s-i+n



: HMM,         : linguistic feature
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Relation between two approaches

Clustered
states

Merged
states

Sentence
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・
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Mean Variance c
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Stream-dependent tree-based clustering

Decision trees
for

mel-cepstrum

Decision trees
for F0 

HMM

State duration
model

Decision tree for
state duration models

Three dimensional Gaussian



HMM-based speech synthesis system
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Speech parameter generation algorithm
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  Determination of durations

: state sequence

 Determination of speech parameter



Generated speech parameter trajectory
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Generated speech parameter trajectory
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Trajectory HMM
qcMean trajectory
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Flexibility to control speech variations

• Speaker Adaptation (mimicking voices)
• [Tamura ’98], [Tamura ’01], [Yamagishi ’03], …

• Speaker Interpolation (mixing voices)
• [Yoshimura ’97], …

• Eigenvoice (producing voices)
• [Shichiri ’02], [Kazumi ’10], …

• Multiple-regression (controlling voices)
• [Nose ’07], …

Only from publications by the HTS working group

()



Mixing emotional expressions

()



Singing synthesis

Score with lyric

HMM/DNN

1) HMM/DNN training

2) Singing generation

Any score with lyric Synthesized singing

HMM+STRAIGHT
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STRAIGHT

Hidden Markov model approach

Feature extraction
/waveform generation Acoustic model Text analysis

HMM

• GV-based parameter generation [Toda ’05]
• HSMM (hidden semi-Markov model) [Zen ’07]
• Trajectory HMM training [Zen ’07]
• MGE training [Wu ’08]
• Bayesian approach [Hashimoto ’09]
• Additive decision tree [Takaki ’10]
• Trainable excitation model [Maia ’07], etc.

Only from publications by the HTS working group



Recombining submodules

Feature extraction
/waveform generation Acoustic model Text analysis

Only from publications by the HTS working group

• Joint estimation of acoustic and excitation models [Maia ’10]
• Log spectral distortion-version of MGE training [Wu ’09]
• Factor analyzed trajectory HMM (STAVOCO) [Toda ’08]
• Mel-cepstral analysis-integrated HMM [Nakamura ’14]

• Joint front-end / back-end training [Oura ’08]



Deep neural network approaches (1/6)

Feature extraction
/waveform generation Acoustic model Text analysis

FFNN, LSTM

• DNN-based speech synthesis [Zen ’13]
• LSTM-based speech synthesis [Fan ’14], etc.



DNN vs HMM

DNN
• Work for larger database?
• Flat structure

• Easy to implement
• Difficult to shouting troubles

• Often prior knowledge / model 
complexity is embedded in 
initialization and/or training 
process

• Suitable for parallel/distributed 
computation

• Optimization in continuous space

HMM ( regression tree)
• Can work for small database?
• Plausible structure

• Difficult to implement
• Easy to shouting troubles

• Prior knowledge / model 
complexity can be given in an 
explicit form (e.g., model 
structure)

• Unsuitable for parallel/distributed 
computation

• Optimization in discrete space



Deep neural network approaches (2/6)

Feature extraction
/waveform generation Acoustic model Text analysis

1. Measuring likelihoods of speech waveform directly,
2. train a neural network
3. which models both voiced and unvoiced components.



>>

FFNN, LSTM
Source

filter model

• Directly modeling speech waveforms by neural networks [Tokuda ’15], 
• Directly modeling voiced and unvoiced components by neural networks [Tokuda ’16]



Speech signal model

௩

White Gaussian
with zero-mean and unit-variance

Voiced component
௩

Signal model for unvoiced+voiced sounds
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Deep neural network approaches (3/6)

Feature extraction
/waveform generation Acoustic model Text analysis

WaveNet, SampleRNN, WaveRNN, …
(autoregressive sturucture)



WaveNet
• Autoregressive generative model using convolutional NN

• Directly modeling speech waveform

• Dilated causal convolution

47

: waveform

modeled by using CNN

: acoustic and linguistic feature



Speech signal generation model

𝑃ௌ 𝑧𝑃 𝑧

Long-term predictor Short-term predictor

𝑥 𝑛𝑒 𝑛

WaveNet

Nonlinear Predictor

𝑥 𝑛𝑒 𝑛

It works!





Famous words in speech technology (1980s)

“Every time I fire a linguist,
the performance of the speech recognizer goes up”

by Frederick Jelinek

“Every time I fire a speech technology researcher,
the performance of the speech synthesizer goes up”

by ????? ?????



DNN variants for waveform modeling

• Autoregressive
• WaveNet, SampleRNN, WaveRNN, …

• Normalizing flow
• WaveGlow, Pallalel WaveNet, ClariNet, FloWaveNet, …

• Combining with source filter model
• LPCNet, ExcitNet, GlotNet, LP-WaveNet, …

• Introducing signal processing technique
• SubbandWaveNet, FFTNet, …

 >>



DNN vocoder with periodic excitation

• Autoencoder-type structure 
extracts 3 dimensional periodic 
signal

• Decoder generates periodic 
components and stochastic 
components

• WaveNet gives a constraints on 
the intermediate variable

[Oura ’19]



Deep neural network approaches (4/6)

Feature extraction
/waveform generation Acoustic model Text analysis

FFNN, LSTM

• HSMM: duration model is included
• FFNN, LSTM, WaveNet: external duration predictor is required



Frame-by-frame 
conversion

It needs an external 
duration predictor to 
determine phone durations

From an external
duration predictor

Phoneme-level

Frame-level

Frame-level



DNN-HSMM 
architecture HSMM as the pdf of MDN

State-level or
phoneme-level Frame-level

It runs at state-level
or phoneme-level

[Tokuda ’16]



WaveNet vocoder
(autoregressive structure)

Deep neural network approaches (5/6)

Feature extraction
/waveform generation Acoustic model Text analysis

Tacotron, Char2Wav, DeepVoice, …
(attention mechanism)
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Attention mechanism [from arXiv:1712.05884]

Tacotron 2

Decoder
Acoustic feature

generation

Attention
mapping b/w

text and acoustic feature

Encoder
text analysis



Attention
WaveNet vocoder

(autoregressive structure)

Deep neural network approaches (6/6)

Feature extraction
/waveform generation Acoustic model Text analysis





Controlling intermediate variables in the 
hierarchical structure
• Language

• Japanese, English, Chinese, …
• Dialect
• Pronunciation
• Pause
• Allophone
• Prosody

• Accent, stress, tone, …
• Speaking style, emotional expression
• Emphasis
• Nonverbal, paralinguistic information
• Voice characteristics

• Male, female, child, adult, eldarly
• Speech parameter

• Fundamental frequency, volume, duration, aperiodic component, …

High level

Low level

Text analysis

Acoustic model

Vocoding



Singing synthesis with CNN+WaveNet

CNNWaveNet vocoder

Feature extraction
/waveform generation Acoustic model Text analysis



Other DNN techniques and architectures

• GAN

• VAE/VQ-VAE

• Transformer (self attention)
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Blizzard Challenge

• Performance of TTS system depends on the database
• Difficult to compare techniques themselves

“Blizzard Challenge”
Evaluating corpus-based speech synthesis

on common datasets [Black ’05]

 

Since 2005



Evaluation methodology

• Naturalness
• Mean Opinion Score

• Speaker similarity
• Degradation Mean Opinion Score

• Intelligibility (dictation of SUS, PCS, etc.)
• Word accuracy

Not enough for spontaneous speech, audio book task, etc. 





Common datasets for speech synthesis

• ELRA http://www.elra.info/
• ELDA http://www.elda.org/
• LDC https://www.ldc.upenn.edu/
• OpenSLR http://www.openslr.org/

• ARCTIC
• VCTK
• LibriTTS, …

Not so many because it needs studio-quality recordings



Software tools

• ISCA SynSig https://www.synsig.org/index.php/Software

• ISCA SCOOT https://www.isca-speech.org/iscaweb/index.php/scoot



Software tools

Toolkit for building voice interaction systems

Speech synthesis engine

Speech recognition engine

Singing synthesis system

Speech signal processing toolkit
         Training toolkit         

Japanese TTS system

Takashi Masuko, Noboru Miyazaki, Kazuhito Koishida, Takayoshi Yoshimura,
Heiga Zen, Junichi Yamagishi, Keiichiro Oura, Akinobu Lee and others contributed



Outline
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• Deep neural networks
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• Text normalization
• Voce conversion
• Speech coding
• Anti-spoofing
• Physical simulation



Text normalization

• Text normalization is excluded from the end-to-end systems
• Still rule-based approach is the mainstream

• It would be included in the end-to-end process in the near future



Voice conversion

• Close relationship to speech synthesis

• DNN-approach has emerged also in voice conversion research

• Realtime application is essential

• Realtime (or low-latency) prosody conversion is a challenging 
problem



Speech coding

• WaveNet and other waveform modeling approaches seems to 
bring a revolution to speech coding.

• WaveNet based low rate speech coding [Kleijn ’18]
• A Real-Time Wideband Neural Vocoder at 1.6 kb/s Using LPCNet [Valin ’19]
• Low Bit-rate Speech Coding with VQ-VAE and WaveNet [Garbacea ’19]
• High-quality speech coding with sample RNN [Klejsa ’19]
• WaveNet-based zero-delay lossless speech coding [Yoshimura ’18]
• Wavenet-based delay-free ADPCM Speech Coding [Yoshimura ’19]



Imposture using speech synthesis

• Fear for spoofing with speech synthesis
• On the security of HMM-based speaker verification systems against 

imposture using synthetic speech [Masuko ’99]

• Detecting synthesized speech
• A robust speaker verification system against imposture using an HMM-

based speech synthesis system [Satoh ’01]

• ASVspoof 2015
• The First Automatic Speaker Verification Spoofing and Countermeasures 

Challenge



Physical simulation vs Deep neural network

• In the future, techniques for measuring dynamics of vocal tract will 
be significantly progressed.

• Also, techniques for simulating speech production system will be 
progressed.

will it be possible to generate natural-sounding speech
based on the physical simulation approach?

• Advantage: realistic constraints, lower dimensional representation
 latent representation in DNN-based system?



Summary

• Now it has reached at the level that we cannot tell the difference 
between human and machine

• Still we have a lot of problems to be solved
• More flexibility and controllability for realizing diversity of speech

Statistical approach to speech synthesis

Let us enjoy speech synthesis research!

Thank you!
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Speech synthesis in the future

• Spoken dialog system

• Speech translation

• Support for people with disabilities

• CALL

• Content creation

Cross-lingual/multilingual

Cross-media

Editor design

Flexibility/diversity

Common data

Low resource language

Let us enjoy speech synthesis research
for realizing diversity of speech!

Thank you!
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