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ABSTRACT

In this paper, we describe an HMM-based speech syn-
thesis system in which spectrum, pitch and state duration
are modeled simultaneously in a unified framework of H-
MM. In the system, pitch and state duration are modeled
by multi-space probability distribution HMMs and mul-
ti-dimensional Gaussian distributions, respectively. The
distributions for spectral parameter, pitch parameter and
the state duration are clustered independently by using a
decision-tree based context clustering technique. Synthetic
speech is generated by using an speech parameter genera-
tion algorithm from HMM and a mel-cepstrum based vocod-
ing technique. Through informal listening tests, we have
confirmed that the proposed system successfully synthe-
sizes natural-sounding speech which resembles the speaker
in the training database.

1. INTRODUCTION

Although most text-to-speech synthesis systems can syn-
thesize speech with acceptable quality, they still cannot
synthesize speech with various voice characteristics such
as speaker individualities and emotions. To obtain vari-
ous voice characteristics in text-to-speech synthesis systems
based on the selection and concatenation of acoustical u-
nits, a large amount of speech data is necessary. However,
it is difficult to collect, segment, and store it. From these
points of view, in order to construct speech synthesis system
which can generate various voice characteristics, we have
proposed an HMM-based speech synthesis system [1].

Several HMM-based concatenative speech synthesis sys-
tems have also been proposed (e.g., [2], [3]). Our system,
however, differs from them in that our system generates syn-
thetic speech from HMMs themselves by using a speech pa-
rameter generation algorithm [4] and a mel-cepstrum based
vocoding technique [5], [6]. In the parameter generation
algorithm, by the inclusion of dynamic coefficients in the
feature vector, the dynamic coefficients of the speech pa-
rameter sequence generated in synthesis are constrained to
be realistic, as defined by the parameters of the HMM-
s. By transforming HMM parameters appropriately, voice
characteristics of synthetic speech can be changed since the
system generates speech from the HMMs. In fact, we have
shown that we can change voice characteristics of synthetic
speech by applying a speaker adaptation technique [7] or
a speaker interpolation technique [8]. However, to change
not only speaker individuality but also speaking style such
as emotion expression, pitch and duration parameters have
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Figure 1. Feature vector.

to be appropriately transformed.
In this paper, in order to apply speaker adaptation/

interpolation techniques to spectrum, pitch and state dura-
tion, simultaneously, and to synthesize speech with various
voice characteristics, we construct a speech synthesis sys-
tem in which spectrum, pitch and state duration are modeled
simultaneously in a unified framework of HMM. In the sys-
tem, pitch and state duration are modeled by multi-space
probability distribution HMMs [9] and multi-dimensional
Gaussian distributions [10], respectively. The feature vec-
tor of HMMs used in the system consists of two streams,
i.e., the one for spectral parameter vector and the other for
pitch parameter vector, and each phoneme HMM has its
state duration densities. The distributions for spectral pa-
rameter, pitch parameter and state duration are clustered
independently by using a decision-tree based context clus-
tering technique [11]. In the context clustering, we take
account of contextual factors which affect spectrum, pitch
and duration such as phone identity factors, stress-related
factors and locational factors.

The rest of this paper is structured as follows. Section
2 describes simultaneous modeling of spectrum, pitch and
state duration. Section 3 describes the proposed text-to-
speech synthesis system. Experimental results are present-
ed in Section 4, and concluding remarks and our plans for
future work are presented in the final section.

2. SIMULTANEOUS MODELING

2.1. Spectrum and Pitch Model
We use mel-cepstral coefficients as spectral parameter. Se-
quences of mel-cepstral coefficient vector, which are ob-
tained from speech database using a mel-cepstral analysis
technique [5], are modeled by continuous density HMMs.
The mel-cepstral analysis technique enables speech to be
re-synthesized from the mel-cepstral coefficients using the
MLSA (Mel Log Spectrum Approximation) filter [6].



Pitch patterns are modeled by a hidden Markov model
based on multi-space probability distribution (MSD-HMM)
[9]. We cannot apply the conventional discrete or continu-
ous HMMs to pitch pattern modeling since the observation
sequence of pitch pattern is composed of one-dimensional
continuous values and a discrete symbol which represents
“unvoiced”. The MSD-HMM includes discrete HMM and
continuous mixture HMM as special cases, and further can
model the sequence of observation vectors with variable di-
mension including zero-dimensional observations, i.e., dis-
crete symbols. As a result, MSD-HMMs can model pitch
patterns without heuristic assumption.

We construct spectrum and pitch models by using em-
bedded training because the embedded training does not
need label boundaries when appropriate initial models are
available. However, if spectrum models and pitch mod-
els are embedded-trained separately, speech segmentations
may be discrepant between them.

To avoid this problem, context dependent HMMs are
trained with feature vector which consists of spectrum,pitch
and their dynamic features (Fig. 1).

2.2. State Duration Model
State duration densities are modeled by single Gaussian
distributions [10]. Dimension of state duration densities
is equal to the number of state of HMM, and then-th di-
mension of state duration densities is corresponding to the
n-th state of HMMs1. Since state durations are modeled
by continuous distributions, our approach has the following
advantages:

� The speaking rate of synthetic speech can be varied
easily.

� There is no need for label boundaries when appropriate
initial models are available since the state duration
densities are estimated in the embedded training stage
of phoneme HMMs.

There have been proposed techniques for training HMMs
and their state duration densities simultaneously (e.g., [12]).
However, these techniques require a large storage and com-
putational load. In this paper, state duration densities are
estimated by using state occupancy probabilities which are
obtained in the last iteration of embedded re-estimation
[10].

3. CONTEXT DEPENDENT MODEL

3.1. Contextual Factors
There are many contextual factors (e.g., phone identity fac-
tors, stress-related factors, locational factors) that affect
spectrum, pitch and duration. In this paper, following con-
textual factors are taken into account:

� mora2 count of sentence
� position of breath group in sentence
� mora count offpreceding, current, succeedinggbreath

group
� position of current accentual phrase in current breath

group
� mora count and accent type offpreceding, current,

succeedingg accentual phrase

1We assume the left-to-right model with no skip.
2A mora is a syllable-sized unit in Japanese.
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� fpreceding, current, succeedingg part-of-speech
� position of current phoneme in current accentual

phrase
� fpreceding, current, succeedingg phoneme

Note that a context dependent HMM corresponds to a
phoneme.

3.2. Decision-Tree Based Context Clustering
When we construct context dependent models taking ac-
count of many combinations of the above contextual factors,
we expect to be able to obtain appropriate models. How-
ever, as contextual factors increase, their combinations also
increase exponentially. Therefore, model parameters with
sufficient accuracy cannot be estimated with limited train-
ing data. Furthermore, it is impossible to prepare speech
database which includes all combinations of contextual fac-
tors.

To overcome this problem, we apply a decision-tree
based context clustering technique [11] to distributions for
spectrum, pitch and state duration. The decision-tree based
context clustering algorithm have been extended for MSD-
HMMs in [13]. Since each of spectrum, pitch and duration
have its own influential contextual factors, the distribution-
s for spectral parameter and pitch parameter and the state
duration are clustered independently (Fig. 2).
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4. TEXT-TO-SPEECH SYNTHESIS SYSTEM

The synthesis part of the HMM-based text-to-speech syn-
thesis system is shown in Fig. 3. In the synthesis part, an
arbitrarily given text to be synthesized is converted to a
context-based label sequence. Then, according to the label
sequence, a sentence HMM is constructed by concatenating
context dependent HMMs. State durations of the sentence
HMM are determined so as to maximize the likelihood of
the state duration densities [10]. According to the obtained
state durations, a sequence of mel-cepstral coefficients and
pitch values including voiced/unvoiced decisions is gener-
ated from the sentence HMM by using the speech parameter
generation algorithm [4]. Finally, speech is synthesized di-
rectly from the generated mel-cepstral coefficients and pitch
values by the MLSA filter [5], [6].

5. EXPERIMENT

We used phonetically balanced 450 sentences from ATR
Japanese speech database for training. Speech signals were
sampled at 16 kHz and windowed by a 25-ms Blackman
window with a 5-ms shift, and then mel-cepstral coefficients
were obtained by the mel-cepstral analysis3. Feature vector
consists of spectral and pitch parameter vectors. Spectral
parameter vector consists of 25 mel-cepstral coefficients
including the zeroth coefficient, their delta and delta-delta
coefficients. Pitch parameter vector consists of log pitch, its
delta and delta-delta. We used 3-state left-to-right HMMs
with single diagonal Gaussian output distributions. Deci-
sion trees for spectrum, pitch and duration models were
constructed as shown in Fig. 2. The resultant trees for spec-
trum models, pitch models and state duration models had
6,615, 1,877 and 201 leaves in total, respectively.

3The source codes of the mel-cepstral analysis/synthesis can be found
in http://kt

�

lab.ics.nitech.ac.jp/˜tokuda/SPTK/.

Fig. 4 shows examples of constructed decision trees for
spectrum (a), pitch (b) and state duration (c). In these fig-
ures, “L �”, “C �” and “R �” represent “preceding”, “cur-
rent” and “succeeding”, respectively. “Silence” represents
silence of head or tail of a sentence, or pause. Question-
s of breath group and accentual phrase are represented by
“� breath�” and “� accent�”, respectively. “Pits2 �” and
“dur s2 �” represent leaf nodes. From these figures, it is
seen that spectrum models are much affected by phonetic
identity, pitch models for “voiced” are much affected by
accentual phrase and part-of-speech, and pitch models for
“unvoiced” are clustered by a very simple tree. With regard
to state duration models, it can be seen that silence and
pause models are much affected by accentual phrase and
part-of-speech, and the other models are much affected by
phonetic identity.

Fig. 5, 6 show generated spectra and pitch pattern, re-
spectively, for a Japanese sentence “heikiNbairituwosage-
ta keisekiga aru” which is not included in the training data.
Only the part corresponding to the first phrase “heikiNbair-
itu” is shown in Fig. 5.

The sound files4 attached to this paper demonstrate
our speech synthesis system. [Sound Y018S01.WAV]
and [Sound Y018S02.WAV] are vocoded natural speech.
[Sound Y018S11.WAV] and [Sound Y018S12.WAV] are
speech generated from the system, and correspond to
[Sound Y018S01.WAV] and [Sound Y018S02.WAV], re-
spectively. It is observed that the system synthesizes
natural-sounding speech which resembles the speaker in
the training database.

Through informal listening tests, we have found that the
stopping rule (a minimum frame occupancy at each leaf
and a minimum gain in likelihood per splice) should be

4These sound files were up-sampled to 22 kHz, and convert-
ed to WAV format. The latest sound files can be found in
http://kt

�

lab.ics.nitech.ac.jp/˜yossie/TTS/.



0

2

4

6

8

F
r
e
q
u
e
n
c
y
 
(
k
H
z
)

0

2

4

6

8

F
r
e
q
u
e
n
c
y
 
(
k
H
z
)

Figure 5. Generated spectra for a phrase “heikiNbairitsu”
(top: natural spectra, bottom: generated spectra).
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Figure 6. Generated pitch pattern for a sentence
“heikiNbairitsuwo sageta keisekiga aru”

(top: natural pitch, bottom: generated pitch).

determined appropriately in decision tree construction. An
overly large tree will be overspecialized to training data and
generalize poorly. On the other hand, a overly small tree
will model the data badly. Therefore we should introduce
some stopping criterion or cross-validation method (e.g.,
[14]–[16]).

6. CONCLUSION

In this paper, we discribed an HMM-based speech synthe-
sis system, in which spectrum, pitch and state duration are
modeled simultaneously in a unified framework of HMM.
As a result, it might be possible to synthesize speech with
various voice characteristics, e.g., emotion expression, by
applying speaker adaptation or speaker interpolation tech-
nique.

Future work will be directed towards investigation of
contextual factors and conditions of the context clustering,
and evaluation of synthetic speech. Synthesizing speech
with various voice characteristics by applying speaker adap-
tation and speaker interpolation techniques is also our future
work.
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