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Adaptive Cepstral Analysis of Speech

Ketichi Tokuda, Member, IEEE, Takao Kobayashi, Member, IEEE, and Satoshi Imai, Member, IEEE

Abstract— This paper proposes an algorithm for adaptive
cepstral analysis based on the UELS (unbiased estimation of log
spectrum). In the UELS, the model spectrum is represented by
cepstral coefficients and the mean square of the inverse filter
output is minimized with respect to the cepstral coefficients. By
introducing an instantaneous gradient estimate of the criterion
in a similar manner of the LMS algorithm, we develop an
adaptive cepstral analysis algorithm. In the analysis system,
an IIR adaptive filter whose coefficients are given by cepstral
coefficients is realized using the log magnitude approximation
(LMA) filter. The filter approximates an exponential transfer
function and its stability is guaranteed for approximation of
speech spectra. To implement the 1/ th order cepstral analysis, the
algorithm requires O( /) operations per sample. It is shown that
the algorithm has fast convergence properties in comparison with
the LMS algorithm. Several examples of the adaptive cepstral
analysis for synthetic signal and natural speech are shown to
demonstrate the effectiveness of the algorithm.

I. INTRODUCTION

ECENTLY, many adaptive signal processing algorithms

have been proposed (e.g., LMS [1] and RLS [2] algo-
rithms). Linear predictors that utilize these adaptive algorithms
are useful in spectral estimation. In fact, the linear adap-
tive predictors have been applied to speech coding systems
successfully [3]. However, they can not estimate zeros in a
pole-zero spectral process such as nasalized speech, because
they assume an all-pole spectral process for signal generation.
Although IIR adaptive filters can estimate zeros, they have two
problems: stability of the filter and uniqueness of the solution
[1]. On the other hand, since the spectrum represented by a
set of cepstral coefficients models poles and zeros with equal
weights, the cepstrum [4] is a suitable parameter for represent-
ing the speech spectrum. It is, therefore, expected that if we
develop an adaptive filter based on cepstral representation, we
can use it to overcome problems involved in the IIR adaptive
filters.

This paper proposes an algorithm for adaptive cepstral
analysis based on the unbiased estimation of log spectrum
(UELS) [5]. In the UELS, the model spectrum is represented
by cepstral coefficients and a spectral criterion is minimized
with respect to the cepstral coefficients. The criterion in the
UELS is regarded as minimization of the mean square of
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inverse filter output. By introducing an instantaneous gradient
estimate of the criterion in a similar manner of the LMS
algorithm, we develop an adaptive cepstral analysis algorithm.
In the analysis system, an IIR adaptive filter whose coefficients
are given by the cepstral coefficients is realized using the LMA
filter [6]. The LMA filter approximates an exponential transfer
function and the stability is guaranteed for approximation of
speech spectra.

At each iteration of the adaptive algorithm, the filter co-
efficients are updated using only the output vector, whereas
the input vector and the output are needed to update the
filter coefficients in the LMS algorithm. To implement the
Mth order cepstral analysis, the algorithm requires O(M)
operations per sample. It is shown that the algorithm has
fast convergence properties in comparison with the LMS
algorithm.

The rest of the paper is organized as follows. In Section II,
we give a brief review of the UELS and discuss the properties
of the criterion. Based on these preliminaries we derive an
algorithm for adaptive cepstral analysis in Section III. To
implement the adaptive analysis system we need to realize the
exponential transfer function. In Section IV, we describe a re-
alization method of the exponential transfer function using the
LMA filter. In Section V, examples of synthesized and natural
speech analysis are shown to demonstrate the effectiveness of
the algorithm. Conclusions are given in Section VI

II. CEPSTRAL REPRESENTATION AND CRITERION

A. Unbiased Estimation of Log Spectrum

The UELS (unbiased estimation of log spectrum) [5] is
a method for obtaining an unbiased log spectral estimator
using logarithmic transformation and nonlinear smoothing of
a periodogram. We assume that the model spectrum H(e/*)
is represented by the cepstral coefficients c(m) up to the Mth
coefficient as follows:

@

u
H(z) = exp }_{ e(m) z7™.
=0

Then the criterion in the UELS is regarded as minimization of

T

E= % {exp R(w) — R(w) — 1} dw 2)
with respect to ¢(m), m = 0,1,.--, M, where
R(w) = log Iy () — log | H(e™) |* 3)
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Fig. 1.

and Iy (w) is the modified periodogram of a weakly stationary
process z(n) with a window w(n) whose length is N:

N-1 P
In(w) = z w(n) z(n) e 7¥" / Z w?(n). (@)
n=0 n=0

It is noted that the criterion has the same form as that in

the maximum likelihood estimation of Gaussian stationary AR
process [7]. Therefore, when the model spectrum is given by

K
H(z) = i S)
1+ Z a(k) 2k
k=1
instead of (1), minimizing (2) with respect to K and
a = [a(1)> CL(Z), Tty a’(M)]T ©)

is equivalent to the linear prediction (LP) method [8]. Fig. 1(b)
shows an example of spectral estimates for a synthetic signal
whose spectrum is given in Fig. 1(a). From the figure it is
seen that the UELS extracts both spectral peaks and valleys

" whereas the LP method cannot extract the valleys as shown in
Fig. 1(c). Although the transfer function H(z) is unrealizable
as a finite order digital filter, it can be approximated by the
log magnitude approximation (LMA) filter [6]. We will discuss
the LMA filter in Section IV. Using the LMA filter, we can
synthesize high quality speech from the cepstral coefficients
obtained by the UELS.

B. Properties of the Criterion
Taking the gain factor K = exp ¢(0) outside from H(z)

H(z) = K D(2) %
) .
Zy=exp »_ c(m)z™ ®)
m=1
we Tewrite (2) as
E:s/K2~|—logK2—%/_:IogIN(w)dw—l )

Spectral estimates for a synthetic signal. (a) True spectrum; (b) UEL’s (M = 10); and (c) linear prediction (M ="10).

where
_ 1 E IN (UJ)

= ESCA R A, 10
7 ) [D(e) o

Thus, minimization of E is equivalent to that of £ with respect
to

e=[e(1),¢(2), -, e(M)]F (1)
and that of E with respect to K. Assuming the number

of samples N in the window w(n) is sufficiently large we
interpret (10) as the mean square of e(n):

_1 [ P

37 | D p W FE® @

where P(w) is the power spectrum of the unknown system and
e(n) is the output of the inverse filter 1/D(z) driven by z(n).

By setting 0E /0K = 0, the gain factor K that minimizes
E is obtained by ,

K= /emin (13)

where €min is the minimized value of e. : ; )
The gradient Ve and the Hessian matrix H of ¢ are given by

Ve = és_ = 27
Jde
= —2[7‘(1),7‘(2), e >T(M)]T (14)
and
8%
H = geper
r(0) (1) (M —1)
L o :
L )
r(M—1) r(1) 7(0)
r(2) . ’I"(M) r(M +1) v
r(M) a D
r(M+1) r(M+2) r(2M)
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Fig. 2 Contours of constant €. (a) UEL’s; (b) linear prediction.

respectively, where coefficients r(m) are the autocorrelation
coefficients of the inverse filter output e(n):

_1 [ Pw
o) =52 | o
= Ele(n)e(n — m)].

Jjwm dw
(16)

Since H is always positive definite (see Appendix A), i.e.,
¢ is convex downward with respect to ¢, there is only a single
global optimum. By setting Ve = 0, we obtain a set of
equations

Ve=-2r=0 an
that gives the optimum.

At the optimum point, from (17) the Hessian matrix is given
by

r@© 0 - 0
H=2 0 r(0)
L T S |
0 - 0 70
0 0 r(M+1)
+ : r(M.+ 2) (18)
0 . :
r(M+1) r(M+2) r(2M)
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Fig. 3. Log magnitude response of the unknown system.

Furthermore, at the optimum point when | D(z) |* is equal to
P(w), the Hessian matrix becomes diagonal
H= diag[z‘(O), r(0), -+, 7”(0)1].

~”

M

19

Even in the case where | D(z)|® is not equal to P(w) at the
optimum, since we can assume

r(0) >> r(m), M<m (20)

the Hessian matrix is approximated by (19). From the fact
that the Hessian matrix H becomes diagonal and the diagonal
elements are equal, i.e., the eigenvalues of H are equal,
contours of constant € become circles in the neighborhood of
the minimum point, as can be seen in Fig. 2(a). The unknown
spectrum for Fig. 2 is shown in Fig. 3. For comparison,
contours for the linear predictor are shown in Fig. 2(b). In
this case, the model spectrum is given by

D(z):—M1

1+ a(k)z7*
k=1

then (12) is minimized with respect to a. The contours for
the linear predictor are ellipses unless the input signal to
the predictor is uncorrelated [1], while the contours for the
UELS are always circles in the neighborhood of the optimum,
independent of correlation of the input signal.

2y

III. ADAPTIVE ALGORITHM

A. Derivation of the Algorithm for Adaptive Cepstral Analysis

From the above discussion, we expect that the minimization
problem of ¢ can easily be solved by the method of steepest
descent or the Newton—Raphson method [9], [10] (see Appen-
dix B). In the method of steepest descent, from the sth result
() the next result is obtained as follows:

D) = ) _ Ve O 22)
From (14), Ve is written as
Ve=-2F [e(n) e(")] (23)
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Fig. 4. Block diagram of the adaptive cepstral analysis system.

e(n)

eq. (26)

where e(™) is the output vector

e = [e(n —1),e(n = 2),--,e(n— M), (24)
To develop an adaptive cepstral analysis algorithm, we intro-
duce an instantaneous estimate [11] in a similar manner of the

LMS algorithm [1]:

Vel = —2¢(n)el™. (25)
The mean value of Ve(™ is equal to the true gradient Ve when
the coefficients vector ¢ is held constant. With this estimate of
the gradient, we specify the steepest descent type of adaptive
algorithm: the coefficients vector ¢(™ at time 7 is updated as

D = e 4 2 e(n) ™. (26)

In the neighborhood of the optimum, the function ¢ can be
approximated by a quadratic function whose Hessian mairix is
given by the diagonal matrix (19). The sufficient condition for
convergence of the method of steepest descent with a quadratic
function is

0<p< —= 27

trtH’
Thus, from (19), the sufficient condition for convergence of
(22) in the neighborhood of the optimum is given by

b
Mr(0) Me

On the other hand, it is difficult to examine the convergence
of the adaptive algorithm (26) theoretically, since we use an
imperfect gradient estimate in the algorithm. However, from
the discussion of the criterion surface in section II and the fact
that the efficiency of the LMS algorithm approaches a theoret-
ical limit for adaptive algorithm when the eigenvalues of the
Hessian matrix are equal [1], the proposed algorithm should
have fast convergence properties independent of whether the
input signal is correlated.

Instead of (25), other gradient estimates can also be used.
For example, the gradient is estimated with an exponential
window [10]:

0<p< (28)

Ve = 2

(1=7) 3 7" e(d) e

1=—00

29

where 7 is a constant in a range 0 < 7 < 1. Such an estimate
can be calculated recursively by

Vel = 7761 — 2(1 — 7)e(n)e(™. G0

Although we can use the estimate Ve(™ to suppress flucta-
ation of ¢, this paper uses the instantaneous estimate (25) to
simplify the discussion.

Fig. 4 shows the adaptive cepstral ana1y51s system. The
coefficients of the adaptive filter that has an exponential
transfer function are updated by (26). At each iteration of the
adaptive algorithm, the filter coefficients are ‘updated using
the output vector e(™ and the output e(n), whereas the
input vector and the output e(n) are needed to update the
filter coefficients in the LMS algorithm [1]. “To implement
the Mth order cepstral analysis, the algorithm (26) requires
2M operations per sample. The transfer function 1/D(z) is
minimum phase, but it is unrealizable as a finite order digital
filter because it is not a rational function. We will discuss a
realization method of the inverse filter 1/ D(z) and its stab111ty
in the section IV.

B. Estimation of the Gain
An estimate of € at time n is given by

n

e =(1-x) Y Ate(i)

i=—00

€2V

where A is a constant in a range 0 < A < 1. This can be
calculated in the same way as (30):

(32)

™ = XY L (1 —A) e2(n).
From (13), we get an estimate of K at time n by
K™ = /e, (33)

When the gain of the signal is time-varying, u is normalized
by &™) as follows:

() =~ %
M ()

where « is a constant in a range 0 < o < 1. This equation is
derived by the analogy of the convergence condition (28) of
the method of steepest descent (22).

(34

IV. EXPONENTIAL TRANSFER FUNCTION

A. Realization of Exponential Transfer Function

We realize the exponmential transfer functions D(z) and
1/D(z) in Fig. 4 using the LMA filter [6]. The complex
exponential function expw is approximated by-a rational
function ‘

1+ i AL,I w!
expw ~ Rp(w) = Ll=1 (35)
1+ZALJ (—w)! ‘
=1 /
For example, if we choose Ay, ; as
wmn()/CF) oo
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Fig. 5. Realization of the exponential transfer function 1/D(z). (a)
Rp(—F9z)) =~ 1/D(z)L = 4. (b) Two-stage cascade structure
Rp(=F1(2)) - Rp(=F2(2)) ~ 1/D(z).

e(n)

Ri(-Fi(2)) Ri(~F3(2))

TABLE I
COEFFICIENTS OF Ry(w)

Agy
4.999273 x 10!
1.067005 x 10~!
1.170221 x 10-2
5.656279 x 10~¢

W N | e

then (35) is the [L/L] Padé approximant of expw at w = 0.
Thus, D(z) and 1/D(z) are approximated by

Ri(F(z)) ~ exp(F(2)) = D(z), 37)
Ri(-F(2)) ~ exp(=F(z2)) = 1/D(z) 38)
respectively, where F(z) is defined by
M
F(z) = ¢(m)z™™. (39)

Since we can realize Ry (F(z)) ~ D(z) and RL(—F(z)) ~
1/D(z) in the same manner except for changing the sign
of F(z), we will discuss the realization of 1/D(z) in the
following.

Fig. 5(a) shows the block diagram of the LMA filter
Rp(—F(z)) ~ 1/D(z). Since the transfer function F'(z) has
no delay-free path, Ry (—F(z)) has no delay-free loops, that
is, Ry, (— F(z)) is realizable. The transfer function Rr(—F(z))
is also realized in a variety of other structures (for an example,
[121).

B. Approximation Accuracy and Stability
If ¢(1),¢(2),---,c(M) are bounded, |F(e*)| is also
bounded and there exists a positive finite value = such that

mj),x) F(e*) l <. 40)

We can obtain the coefficients Ar;, | = 1,2,.-., L which
minimize the maximum of the absolute error im?} | Ep(w)|
using a complex Chebyshev approximation technique [13],
where

Er(w) = log(expw) — log(Rr(w)). 41)
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Fig. 6. (a) Pole-zero plot for Ry (w). (b) Error Er(r ei?). (L = 4)

The coefficients obtained with L = 4,7 = 4.5 are shown in

Table I. From Fig. 6(b), it is seen that the maximum of the

error lm?x | Er(w) | is 0.028 (0.24 dB). The rational function
w=r

Ry (w) given by Table I has no poles and zeros in the region
| w| < Tmasz = 6.2 as shown in Fig. 6(a). Therefore, from the
maximum principle, the error | Er,(w) | does not exceed 0.028
(0.24dB) in the region |w| < r = 4.5. Consequently, when
| F(e7*)| < r = 4.5, the error '

| EL(=F(e*)) | = |log(1/D(e?*)) ~ log Ry(~F (™)) |
(42)

does not exceed 0.028 (0.24 dB).
Since F'(z) has no poles except z = 0, from the maximum
principle, (40) is rewritten as

IBF,ZXl |F(2)| <. 43)

Therefore, since Rz (w) has no poles and zeros in the region
|w| < Tmaz = 6.2, under the condition that r < ryay0f
(40), R4(~F(z)) has no poles and zeros for | z| > 1; ie., it
becomes a minimum phase system.

C. Cascade Structure
When F(z) is expressed as

F(2) = Fr(2) + Fa(z) (44)

the exponential transfer function 1/D(z) is approximated in
a cascade form
1/D(z) = exp(-F(2)) = exp(—F1(2)) - exp(— F3(2))
ad RL(—Fl(Z)) . RL(—FQ(Z)) (45)
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Fig. 7. Convergence characteristics for the adaptive cepstral analysis.
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as-shown in Fig. 5(b). If

max | Fy(e?*) |, max | Fp(e?) | < max | F(e™)]|  (46)
it is expected that Rz (—F1(e’*)) - Ry(—Fa(e’™)) approxi-
mates 1/D(e’*) more accurately than Ry (—F(e/)).

In the following experiments, we let

Fi(z) = (1) 27} 47
M
Fy(z) = e(m)z"™. 8)
m=2
Since we have empirically found that
max | Fy(e/) |, max | Fy(e/®) | <r=145 (49)

for speech sounds sampled at 10kHz, Rp(—Fi(z)) -
Rr(=Fy(z)) approximates the exponential transfer function
1/D(z) with sufficient accuracy and becomes a minimum
phase system.

The LMA filter shown in Fig. 5 requires 4M + O(1)
multiply-add operations per sample. Thus, the total number
of multiply-add operations for the adaptive cepstral analysis is
5M + O(1): M + O(1) for the adaptive algorithm (26) and
the normalization of the step size (32), (34), and 4M + O(1)
for the LMA filter.

V. EXAMPLES

A. Simulation Results

In order to produce signals to be analyzed, the LMA filter
with M = 2, which has the log magnitude response shown in
Fig. 3, was driven by a white Gaussian noise or a pulse train
with unit variance. The period of the pulse train is six samples.

a
-1 . : ....l ...I. M " .. A . a(z)
0 200 400 600 800 1000
n
(@)
................................................................................................. l
0508 atd)
— p = 0.0016
............................................................................................ N
T O | ................... , ................... a(Z)
1 1
200 400 600 800 1000
n
)

Fig. 8. Convergence characteristics for the LMS linear predictor.

The algorithm was implemented with M = 2, ¢(® = 0, and
p = 0.005,0.01. , o
The results are shown in Fig. 7. For comparison, the per-
formance of the LMS linear predictor is shown in Fig. 8.
The conditions are the same as in Fig. 7 except that p =
0.0008,0.0016. Note that 4 = 0.0016 is the largest value
before divergence with the white noise. It is seen from
the figure that the proposed algorithm has fast convergence
characteristics, while the LMS linear predictor needs more
than 1000 iterations to converge. This result coincides with

the discussion in Section III-A.

Fig. 7(b) shows that the coefficients vector ¢ does not vary
after convergence when the unknown system is driven by a
pulse train. This property is based on the following facts: when
D(z) is equal to the transfer function of the unknown system;
the inverse filter output e(n) becomes a pulse train; hence, if
we assume that the period of the pulse train is greater than M,
the estimated gradient (25) becomes zero.

B. Analysis of Natural Speech

Fig. 9 shows the result of the adaptive cepstral analysis
for a natural speech. The signal shown in Fig. 9(a) is the
natural English speech “two zero eight six” uttered by a
male. It was sampled at 10kHz (sampling rate 100us). The
algorithm was implemented with M = 25, o = 0.2, A = 0.98,
and p is normalized by (34). In Fig. 9(b), the thin line
shows the coefficients versus the iteration number for the
proposed algorithm. For comparison, the coefficients obtained
by the UELS are also shown in Fig. 9(b) by:the thick line.
The UELS was carried out by weighting the signal with
a 25.6ms Blackman window with frame shift of 10 ms.
Fig. 9(c) shows log magnitude spectra obtained from the
cepstral coefficients at intervals of 10ms-(100. samples). From
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Fig. 9, it is seen that the proposed algorithm has sufficiently
fast convergence characteristics for speech analysis. The UELS
and the conventional cepstrum analysis [4] need several times
of FFT to obtain a set of cepstral coefficients. Thus, the
number of operations per sample for the adaptive cepstral
analysis is considerably small compared with the UELS or the
conventional cepstrum analysis, especially, in the case where
the frame shift is small. In spite of that, the quality of the
synthesized speech based on the adaptive cepstral analysis is
only slightly inferior to that based on the UELS.

The adaptive cepstral analysis system has been imple-
mented with a general-purpose 32-bit floating-point DSP (NEC
uPD77230). The speed of operation per sample is 59 us: 30
us for filtering by the LMA filter, and 29 us for coefficients
update and gain estimation. Consequently, it can easily run at
sampling frequency of 10kHz.

VI. CONCLUSION

In this paper, we have presented an algorithm for adaptive
cepstral analysis. The proposed adaptive analysis system is
implemented with an IIR adaptive filter whose coefficients

Sy
é%?%gf g

i i
,%%ésé%g

-
ke

i

T

Ui
©)

A\
S
= 25 a = 0.2, A = 0.98). (a) Waveform. (b) Cepstral coefficients. ©)

are given by cepstral coefficients. The stability of the fil-
ter is guaranteed for approximation of speech spectra. The
adaptive cepstral analysis requires O(M) operations to obtain
the cepstral coefficients up to Mth coefficient sample-by-
sample, and has fast convergence properties in comparison
with the LMS algorithm. A real-time speech analysis system
can easily be implemented with one currently available DSP.
The proposed method has been developed to adaptive mel-
cepstral analysis [10], and its potential applications to speech
recognition [10], speech coding [14], adaptive equalization,
echo canceling, etc., are currently investigated. Development
of the RLS-type algorithm for adaptive cepstral analysis is
also a future research problem.

APPENDIX A
PROOF THAT H IS POSITIVE DEFINITE

In this section, we show that Hessian matrix H is positive
definite, i.e.,
THz >0,

z#0 (50)
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where
T =1, 2, -, M| . (51)

The left side of equation (50) is rewritten as follows:

1
' Hz =3y Ry (52)
where
y:[xM)"'ax2>$l707 £17$27"')$M]T (53)
r(0) r(1) r(2M)
B =| "D 7O (54
: ()
r(2M) (1)  r(0)
It follows from (16) that
IETHQ; = % yTRzMy
2
1 T
== T cOs(mw) | dw
/——7r ID(BJM W;_ ( )
>0, z #0. (55)
APPENDIX B

NEWTON-RAPHSON METHOD

For the ith result ¢(*), solving a set of linear equations

HAY = -Ve| _ ), (56)
we have the values
Ac® = [AcD (1), AcD(2),- -, AcD(M)]T (57)
Then, the next result is obtained as follows:
D) = () + Ac®, (58)

When the approximation of (12) is not used, coefficients
{r(m)}24, are given by

- i g IN(LL)) e
=5 [ D

and they are calculated efficiently using the FFT. We can use
the FFT cepstrum as an initial guess ¢(®) . The convergence
is quadratic because the Hessian matrix is positive definite
even if coefficients {r(m)}2M, are given by (59). We have
found that typically a few iterations are sufficient to obtain
the solution.

Since the matrix H is a symmetric Toeplitz plus Hankel
matrix, (56) can be solved using fast recursive algorithms
(e.g., [15]) that require O(M?) arithmetic operations. Further
reduction of the computational complexity can be obtained as
follows. Equation (56) is rewritten as follows:

Roredy =03, [0,---,0,1,0,---,0]7
M M

jwm dw

(59

(60)

where Rgpr is given by (54) and

dM(m) = '—Ac(i) (m)a
We can solve (60) with O(M?) operations, since it has the .
same form as the normal equation for linear prediction with
linear phase [16]. We can also use an algorithm [17] whose
number of operations is reduced to about half of [16] using
the symmetric property of (60).

m=1,2- M. (62
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