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Abstract

One of the drawbacks to the speech synthesis technique wherein speech parameters are

directly generated from hidden Markov models (HMM-based speech synthesis) is the unnat-

uralness of the synthesized speech. This problem occurs owing to the rough excitation model

employed during the waveform generation stage. This report introduces a new excitation ap-

proach that attempt to solve this problem. The proposed scheme consists in feeding the mel

log spectrum approximation (MLSA) filter with mixed excitation, obtained through a set of

state-dependent filters. The filters are derived from the speech database through a closed-loop

procedure where the likelihood of the residual is maximized.

1 Introduction

In the last years the technique in which speech is generated from parameters directly obtained from

hidden Markov models [18, 24, 19, 11] has emerged as a good choice for synthesizing speech

with different voice styles and characteristics [13, 23, 16, 21, 22]. However, one disadvantage

of this technique when compared with unit concatenation-based systems [5] corresponds to the

quality of the synthesized speech, which presents a low degree of naturalness. This fact basically

occurs because of the simple excitation scheme where the switch between pulse train and random

noise are employed to model voiced and unvoiced segments, respectively, generating the excitation

which is fed into the MLSA filter [4, 17]. Consequently, the synthesized speech presents the same

artifacts which are usually observed in linear predictive (LP) vocoders [3].

In order to solve the problem in question, some approaches have been reported, e.g. [25,

26, 1, 10]. Yoshimura et al [25] proposed the application of the mixed excitation generated by

the Mixed Excitation Linear Prediction (MELP) speech coding algorithm [15, 14] to HMM-based
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speech synthesis, achieving a significant improvement on the quality when compared to the sim-

ple excitation method. The idea consisted in the modeling by HMMs of all the parameters em-

ployed by MELP speech coding, namely: bandpass voicing strength parameters, jitter, and Fourier

magnitudes, jointly with mel-cepstral coefficients andF0. In that case each observation vector

was composed of seven streams: (1) mel-cepstral coefficients; (2)log(F0); (3) ∆log(F0); (4)

∆∆log(F0); (5) bandpass voicing strength coefficients; (6) pulse position jitter; and finally (7)

Fourier magnitudes. Later, Zen et al [26] proposed an improved excitation scheme. It consisted

in the utilization of the high-quality vocoding method employed by STRAIGHT [8]. In order to

synthesize speech without artifacts the bandpass voicing components were modeled by HMMs,

in the same way as the method proposed by Yoshimura. The resulting quality was considerably

better.

Here a novel excitation approach is proposed. In the present case mixed excitation is gen-

erated by inputting pulse train and white noise into two filters which vary according to a sequence

of specific states which may be represented, for instance, by:

• leaves of decision-trees generated for the distributions of mel-cepstral coefficients or F0;

• voicing conditions (voiced or unvoiced segments);

• sequence of acoustic units whose durations might be derived through time-alignment, e.g.

monophone and triphone.

The filters are derived in a way to maximize the likelihood of residual sequences over the corre-

sponding states. Pulse trains are also optimized in the sense of residual likelihood maximization.

The joint procedure comprising filter determination and pulse optimization is conducted itera-

tively, behaving thus as a closed-loop system. Although some analysis-by-synthesis methods,

similar to Code-Excited Linear Prediction (CELP) speech coding algorithms [3], have already

been proposed for speech synthesis, e.g. [2], the present approach targets natural residual instead

of speech and assumes the error of the system as the unvoiced component of the excitation.

The remaining of this report is organized as follows: Section 2 introduces the idea of the

proposed excitation approach for HMM-based speech synthesis; Section 3 concerns the problem

formulation; Section 4 shows how the state-dependent filters can be calculated; Section 5 describes

pulse train optimization procedure; Section 6 regards the closed-loop algorithm used for filter

computation and pulse optimization; and the conclusions are given in Section 7.
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Figure 1: Proposed excitation scheme.

2 The idea

The excitation scheme proposed is depicted in Figure 1. The excitation signale(n) is constructed

by the addition of the pulse traint(n), and white noise,w(n), filtered respectively by the state-

dependent voiced and unvoiced filters,Hv(z) andHu(z). Their transfer functions are given by

Hv(z) =

M
2∑

l=−M
2

h(l)z−l, (1)

Hu(z) =
K

1−
L∑

l=1

g(l)z−l

. (2)

whereM andL are the respective the orders. As it can be notice from the illustration, the filters

are associated with each state{1, . . . , S′}.

2.1 Function ofHv(z)

The voiced filterHv(z) transforms the pulse traint(n) into the voiced excitationv(n), which is as

close as possible to the residual sequencee(n). This idea is closely related to the adaptive filtering

theory, considering the system identification problem.
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Figure 2: Re-arrangement of the excitation part: input correspond to pulse train and residual

whereas white noise is produced at the output.

The property of having a finite impulse response leads to stability. Further, since the final

waveform is synthesized offline, an anti-causal structure might achieve better performance through

the processing of delayed and advanced samples.

2.2 Function ofHu(z)

Since white noise with zero mean and unit variance is the input of the unvoiced filter, the function

of Hu(z) is, therefore, to remove the remaining long-term correlation (assuming that the residual

e(n) has no short-term correlation) from the difference signalu(n) = e(n) − v(n). For this

purpose the all-pole structure based on LP coefficients shown in (2) is a good choice, due to its

simplicity in terms of computational complexity. However, in order to perform as expected the

orderL should be set at least for three pitch periods.

3 Excitation training: problem formulation

Through the re-arrangement of the excitation construction block of Figure 1, Figure 2 can be

obtained. In this case pulse train and speech residual represent the input of the system whereas

white noise is the output, as a result of the filtering ofu(n) through the inverse unvoiced filter

G(z).

By observing the system shown in Figure 2, an analogy with analysis-by-synthesis speech

coders [3] can be made as follows. The target signal is represented by the residuale(n), the error

of the system isw(n), and the terms whose incremental modification can minimize the power of

w(n) are the filters and pulse train. Therefore, according to this interpretation, the problem of

achieving an excitation signal whose waveform can be as close as possible to the residual would
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consist in:

1. the determination of the filtersHv(z) andHu(z);

2. optimization of the positions,{p1, . . . , pZ}, and amplitudes,{a1, . . . , aZ}, of t(n).

In the next two sections, the procedures in which the state-dependent filters are determined

and pulse trains are optimized are described.

4 Filter determination

The filters are determined in a way to maximize the likelihood of the residual1 given the proposed

model of Figure 1. Therefore, the first step is to achieve an expression for the likelihood ofe(n)

which involvesHu(z), Hv(z) andt(n), and eventually maximize it with respect to the filters.

4.1 Likelihood of the residuale(n) given the excitation model

According to Figure 2 pulse train and speech residual correspond to the input of the system

whereas white noise is the output, after being filtered by the inverse unvoiced filter

G(z) =
1

Hu(z)
=

L∑

l=0

g̃(l)z−l (3)

where

g̃(i) =





1
K , i = 0,

g(i)
K , 1 ≤ i ≤ L.

(4)

If we consider the vectorw = [w(0) · · ·w(N − 1)]T - whereN is the database length in

number of samples and[·]T means transposition - as white noise, the probability distribution of

the unvoiced excitation vectoru = [u(0) · · ·u(N − 1)]T given the unvoiced filterHu(z) is

P {u|Hu(z)} =
1√

(2π)N |R|e
− 1

2
uT R−1u, (5)

where the covariance matrixR is

R =




r(0) . . . r(N − 1)
...

...

r(N − 1) . . . r(0)


 , (6)

1Obtained from the speech corpus by inverse filtering. The residual signals are extracted so as to present flat

spectrum with unit power.
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and the autocorrelation sequence,r(n), is given by

r(n) =
1
2π

∫ π

−π
|Hu(ejw)|2ejwndw. (7)

If we makeu = e − v in (5), the likelihood ofu givenHu(z) becomes the likelihood ofe given

Hv(z) andHu(z) since the voiced excitation vectorv = [v(0) . . . v(N − 1)]T is deterministic.

Thus,

P {e|Hv(z),Hu(z)} =
1√

(2π)N |R|e
− 1

2
[e−v]T R−1[e−v], (8)

becomes the likelihood of the residual and consequently the function which must be minimized

through the determination of the voiced and unvoiced filters. By taking the logarithm of (8), the

following expression for the log likelihood is obtained

log P {e|Hv(z), Hu(z)} = −N

2
log 2π − 1

2
log |R| − 1

2
[e− v]TR−1[e− v]. (9)

For the derivation of the vector of coefficients for the voiced filterHv(z),

hi =
[
hi

(−M
2

) · · · hi

(
M
2

)]T
, (10)

and the coefficients of the unvoiced filterHu(z), {gi(1), . . . , gi(L)}, with the related gainKi,

for a specific statei, the log likelihood of the residual written in a form which depend onhi and

{Ki, gi(1), . . . , gi(L)} should be taken into account.

4.1.1 Relationship betweenR and G(z)

SinceG(z) = H−1
u (z), then

R−1 = GTG, (11)

whereG corresponds to theN ×N overall impulse response matrix of the inverse unvoiced filter

G(z) including all the states,

G =




G̃k,j 0 0 0 0 · · · 0

0 G̃i,j 0 0 0 · · · 0

0 0 G̃n,j 0 0 · · · 0

0 0 0 G̃i,j+1 0 · · · 0

0 0 0 0 G̃m,j · · · 0
...

...
...

...
...

...
...

0 0 0 0 0 · · · G̃n,j+1




, (12)

with 0 being a null matrix of any dimension. In this case, the matricesG̃i,j , G̃k,j , G̃n,j , G̃m,j

contain the impulse responses of the filterG(z) for thej-th segments of the statesi, k, n, andm,
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respectively. For instance,̃Gi,j , with dimension(Ni,j + L)×Ni,j , whereNi,j is the length of the

j-th segment of the statei, has the following shape:

G̃i,j =




g̃i(0) · · · 0
...

...
...

g̃i(L) g̃i(0)
...

...
...

0 · · · g̃i(L)




, (13)

where{g̃i(0), . . . , g̃i(L)} is the(L+1)-size impulse response sequence of the filterG(z) for state

i.

4.1.2 The voiced excitation vectorv

Because there is a different voiced filter for each state, the overall voiced excitationv is given by

v = A1h1 + . . . + AShS =
S∑

i=1

Aihi, (14)

whereS is the total number of states. The termAi is the overall pulse train matrix where only the

pulse train samples belonging to the statei are non-zero. For example, considering the case of the

j-th segment of thei-th state, shown in (12), the corresponding matrixAi would be

Ai =




0

Ai,j

0

Ai,j+1

0
...

0




, (15)

where the(M + 1)× (Ni,j + M) matrixAi,j is

Ai,j =




ti,j(0) · · · 0
...

...
...

ti,j(M
2 ) · · · ti,j(0)

...
...

...

ti,j(Ni,j − 1) ti,j(M
2 )

...
...

...

0 · · · ti,j(Ni,j − 1)




. (16)
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The vector{ti,j(0) · · · ts,j(Ni,j − 1)} corresponds to the pulse train for thej-th segment of state

i, and the overall pulse train matrixA is given by

A = A1 + . . . + AS =
S∑

i=1

Ai. (17)

4.1.3 Likelihood ofe(n) in terms of hi, Ai and G

By substituting (11) and (14) into (9), the following expression for the log likelihood is finally

obtained

log P {e|Hv(z),Hu(z)} = −N

2
log 2π +

1
2

log |GTG|−

− 1
2

[
e−

S∑

i=1

Aihi

]T

GTG

[
e−

S∑

i=1

Aihi

]
, (18)

which corresponds to the term to be maximized along the process for the computation of the filters.

4.2 Determination of the voiced filterHv(z)

To determine the impulse response ofHv(z) for a particular statei, the vector of coefficientshi

which maximizes the log likelihood in (18) can be obtained from

∂ log P [e|Hv(z),Hu(z)]
∂hi

= 0, (19)

which results into the following linear system

Xihi = yi, (20)

where

Xi =AT
i GTGAi, (21)

yi =AT
i GTG


e−

S∑

k=1
k 6=i

Akhk


 . (22)

Therefore, if the(M + 1)× (M + 1) matrixXi is singular the solution forhi is unique. In fact,

(20) corresponds to the least-squares formulation for the design of a filter through the solution of

an over-determined linear system [7].
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4.2.1 Segment basis

Since the matrixAi is as shown in (15),Xi andyi can thus be written as

Xi =
Ni∑

j=1

AT
i,jG

T
i,jGi,jAi,j , (23)

yi =
Ni∑

j=1

AT
i,jG

T
i,jGi,j


ei,j −

S∑

k=1
k 6=i

Nk∑

l=1

Ak,lhk


 , (24)

whereNi andNk are the number of segments which belong to the statesi andk, respectively. The

(Ni,j + M + L)× (Ni,j + M) matrixGi,j is

Gi,j =
[
Gp

i,j G̃i,j Gs
i,j

]
(25)

whereGp
i,j andGs

i,j contain, respectively, impulse responses of the inverse unvoiced filters whose

states are covered byM2 samples before and after segmentj of statei. Finally, the residual vector

for thej-th segment of the statei, ei,j , is given by

ei,j =
[
ei,j

(−M
2

) · · · ei,j

(
Ni,j + M

2 − 1
)]

. (26)

4.3 Determination ofHu(z)

To visualize the problem for the computation of the coefficients ofHu(z), another expression

which may represent the log likelihood function should be considered.

It can be noticed that

[e− v]TR−1[e− v] = uTGTGu = wTw =
1

K2

N−1∑

k=0

{
u(k)−

L∑

l=1

g(l)u(k − l)

}2

, (27)

and it can be verified [9] that

|R| =
N−1∏

k=0

|Hu(ejωk)|2 =
N−1∏

k=0

K2

∣∣∣∣∣1−
L∑

l=1

g(l)e−jωkl

∣∣∣∣∣

2 . (28)

If we substitute (27) and (28) into (8), and take the logarithm of the resulting expression, the log

likelihood function becomes

log P{e|Hu(z)} =
N−1∑

k=0

log

∣∣∣∣∣1−
L∑

l=1

g(l)e−jωkl

∣∣∣∣∣

− 1
2

N−1∑

k=1


log 2πK2 +

1
K2

{
u(k)−

L∑

l=1

g(l)u(k − l)

}2

 . (29)
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SinceG(z) is minimum-phase, the first term in the right side of (29) becomes zero. By making

∂ log P{e|Hu(z)}
∂K

= 0, (30)

the gainKm which maximizes (29) can be derived,

Km =
√

εm, (31)

where the minimum energyεm is given by

εm = min
g(1),...,g(l)

{
u(k)−

L∑

l=1

g(l)u(k − l)

}2

. (32)

Therefore, the problem can be interpreted as the autoregressive (AR) spectral estimation ofu(n) [12,

9, 6].

4.3.1 Segment basis

To perform state-dependent AR spectral analysis (LP analysis) onu(n) a mean autocorrelation (or

covariance) sequence representing each corresponding state should be taken into account. Among

several methods, the following ones are considered:

• method 1: considering all segments of a particular statei as ensembles of a wide-sense

stationary process, the mean autocorrelation function fori can be computed as the average

of all short-time autocorrelation functions from all the segments belonging toi (making an

analogy to the method presented in [20] for the periodogram), i.e.,

φ̄i(k) =
1∑Ni

j=1 Fj

Ni∑

j=1

Fj∑

l=1

φi,j,l(k), (33)

whereφs,j,k(k) is the short-term autocorrelation sequence obtained from thel-th analysis

frame of thej-th segment of the statei; Fj is the number of analysis frames, andNi is the

number of segments of statei.

• method 2: the mean autocorrelation sequence is derived as the average from all the “seg-

mental” sequences,

φ̄i(k) =
1
Ni

Ni∑

j=1





1
Fj

Fj∑

l=1

φi,j,l(k)



 . (34)

Finally, the coefficients{gi(1), . . . , gi(L)} can be derived from̄φi(k) by using, e.g., the Levinson-

Durbin algorithm, withKi being the corresponding LP gain [12].
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Figure 3: Scheme for the amplitude and position optimization of the non-zero samples oft(n).

5 Pulse optimization

As the filters are determined through a closed-loop algorithm, the pulse positions and amplitudes

of t(n) are optimized. The procedure is conducted by keepingHv(z) andHu(z) for each corre-

sponding statei constant, and minimizing the mean squared error of the system of Figure 2,

ε = wTw. (35)

It can be noticed that considering the pulse optimization this error minimization is the same as

maximizing (8).

The goal of the pulse optimization is to approachv(n) to e(n) as much as possible, in a

way to remove the short and long-term correlation ofu(n) during the filter computation process.

The procedure is carried out in a similar way to the approach employed byMultipulse Excited

Linear Predictionspeech coders [3]. These algorithms attempt to construct glottal excitations

which can synthesize speech by using a few position and amplitude optimized pulses. In our

particular case, the optimization is performed in the neighborhood of the pulse positions, that are

firstly obtained from pitch marks.

5.1 The procedure

To visualize the way the pulses are optimized, Figure 3 should be considered. The error of the

systemw is given by

w = eg − vg = Hgt, (36)

where

eg =
[
eg(0) · · · eg(N − 1) · · · eg(N + L)

]T
, (37)

is theN+L length vector containing the overall residual signale(n) filtered byG(z). The impulse

response matrixHg is

Hg =
[
hg1 hg2 · · · hgN+L−1

]
, (38)
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with each respective column given by

hgj =
[
0 · · · 0 hg

(−M
2

) · · · hg

(
M
2 + L

)
0 · · · 0

]T
. (39)

The vectort contains non-zero samples only at certain positions, i.e,

t =
[
0 · · · 0 ai 0 · · · 0 ai+1 · · · 0

]T
. (40)

Therefore, the voiced excitation vectorv can be written as

v = Hgt =
Z∑

i=1

aihgi, (41)

where

{a1, . . . , aZ}, (42)

{p1, . . . , pZ}, (43)

are respectively theZ amplitudes and positions oft(n) which are aimed to be optimized.

5.1.1 Amplitude determination

The error to be minimized is

ε = wTw = [eg −Hgt]
T [eg −Hgt] . (44)

Substituting (41) into (44), the following expression results

ε = eT
g eg − 2eg

[
Z∑

i=1

aihgi

]
+

Z∑

i=1

a2
i h

T
gihgi +

Z∑

i=1

aihgi




Z∑

j=1
j 6=i

ajhgj


 . (45)

The optimal pulse amplitudeai which minimizes (44) is thus given by

∂ε

∂ai
= 0, (46)

which leads to

ai =

hT
gi


eg −

Z∑

j=1
j 6=i

ajhgj




hT
gihgi

. (47)
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5.1.2 Position determination

By substituting (47) into (48), an expression for the error considering the optimal amplitude is

achieved,

εa = eT
g eg − 2eT

g

Z∑

j=1
j 6=i

ajhgj +
Z∑

j=1
j 6=i

a2
jh

T
gjhgj+

+
Z∑

j=1
j 6=i

ajhT
gj




Z∑

r=1
r 6=j

arhgr


−





hT
gi


eg −

Z∑

j=1
j 6=i

ajhgj








2

hT
gihgi

, (48)

where it can be seen that the only term which depends onpi is the last one. Therefore, the best

positionpi is that one which minimizesεa, that is,

pi = arg max
pi=1,...,N


hT

gi


eg −

Z∑

j=1
j 6=i

ajhgj







2

hT
gihgi

. (49)

6 Closed-loop algorithm

The overall procedure for the determination of the filtersHv(z) andHu(z), and optimization of

the positions and amplitudes oft(n) is described in Table 1. Pitch marks may represent the best

choice to construct the initial pulse trainst(n). The convergence criterion is the variation of the

voiced filter coefficients.

7 Conclusion

This report introduces a noveltrainableexcitation scheme for HMM-based speech synthesis. The

proposed technique consists in determining voiced and unvoiced filters for each predefined state

which may be represented, for instance, by leaves of phonetic decision-trees for mel-cepstral co-

efficients. Some experiments have shown that this new approach can synthesize speech without

the artifacts imposed by the conventional simple excitation model. Furthermore, since the scheme

in question is derived through an iterative procedure in which the distortion between constructed

excitation and residual sequences is minimized, synthesized speech sounds closer to its natural

version.
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Table 1: Algorithm for joint filter computation and pulse optimization.IX means identity matrix

of X ×X order.

t(n) initialization

1) For each utterancel = 1 to l = U do

1.1) Initialize{pl1 , . . . , plZ} based on the pitch marks

1.2) Optimize{pl1 , . . . , plZ} according to (49), consideringHg = IN+M+L

1.3) Calculate{al1 , . . . , alZ} according to (47), consideringHg = IN+M+L

Hv(z) initialization

1) For each state fromi = 1 to i = S do

1.1) ComputeXi andyi according to (23) and (24), consideringGi,j = INi,j+M+L

1.2) Obtain initialhi by solvingXihi = yi

2) Set voiced filter variation tolerance:εv

3) Set the number of iterations:Niter andNitermax

Recursion

1) For each state fromi = 1 to i = S do

1.1) Makehi
a = hi

1.2) Makeεv = 0

1.3) ComputeXi andyi according to (23) and (24)

1.4) Obtainhi by solvingXihi = yi

1.5) Compute the voiced filter variationεv = εv + (hi
a − hi)

T (hi
a − hi)

2) For each state fromi = 1 to i = S do

2.1) Obtain the mean autocorrelation,φ̄i(k) according to (33) or (34)

2.2) Computegi andKi using the Levinson-Durbin algorithm

3) If εv < εv or Niter = Nitermax, go to (6)

4) For each utterancel = 1 to U do

4.1) Optimize{p1l
, . . . , pZl

} according to (49)

4.2) Calculate{a1l
, . . . , aZl

} according to (47)

5) Return to (1)

6) End
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