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Abstract

One of the drawbacks to the speech synthesis technique wherein speech parameters are
directly generated from hidden Markov models (HMM-based speech synthesis) is the unnat-
uralness of the synthesized speech. This problem occurs owing to the rough excitation model
employed during the waveform generation stage. This report introduces a new excitation ap-
proach that attempt to solve this problem. The proposed scheme consists in feeding the mel
log spectrum approximation (MLSA) filter with mixed excitation, obtained through a set of
state-dependent filters. The filters are derived from the speech database through a closed-loop

procedure where the likelihood of the residual is maximized.

1 Introduction

In the last years the technique in which speech is generated from parameters directly obtained from
hidden Markov models [18, 24, 19, 11] has emerged as a good choice for synthesizing speech
with different voice styles and characteristics [13, 23, 16, 21, 22]. However, one disadvantage
of this technique when compared with unit concatenation-based systems [5] corresponds to the
quality of the synthesized speech, which presents a low degree of naturalness. This fact basically
occurs because of the simple excitation scheme where the switch between pulse train and random
noise are employed to model voiced and unvoiced segments, respectively, generating the excitation
which is fed into the MLSA filter [4, 17]. Consequently, the synthesized speech presents the same
artifacts which are usually observed in linear predictive (LP) vocoders [3].

In order to solve the problem in question, some approaches have been reported, e.g. [25,
26, 1, 10]. Yoshimura et al [25] proposed the application of the mixed excitation generated by

the Mixed Excitation Linear Prediction (MELP) speech coding algorithm [15, 14] to HMM-based



speech synthesis, achieving a significant improvement on the quality when compared to the sim-
ple excitation method. The idea consisted in the modeling by HMMs of all the parameters em-
ployed by MELP speech coding, namely: bandpass voicing strength parameters, jitter, and Fourier
magnitudes, jointly with mel-cepstral coefficients afid. In that case each observation vector
was composed of seven streams: (1) mel-cepstral coefficientsg(@0); (3) Alog(F0); (4)
AAlog(F0); (5) bandpass voicing strength coefficients; (6) pulse position jitter; and finally (7)
Fourier magnitudes. Later, Zen et al [26] proposed an improved excitation scheme. It consisted
in the utilization of the high-quality vocoding method employed by STRAIGHT [8]. In order to
synthesize speech without artifacts the bandpass voicing components were modeled by HMMs,
in the same way as the method proposed by Yoshimura. The resulting quality was considerably
better.

Here a novel excitation approach is proposed. In the present case mixed excitation is gen-
erated by inputting pulse train and white noise into two filters which vary according to a sequence

of specific states which may be represented, for instance, by:
¢ |leaves of decision-trees generated for the distributions of mel-cepstral coefficients or FO;
e voicing conditions (voiced or unvoiced segments);

e sequence of acoustic units whose durations might be derived through time-alignment, e.g.

monophone and triphone.

The filters are derived in a way to maximize the likelihood of residual sequences over the corre-
sponding states. Pulse trains are also optimized in the sense of residual likelihood maximization.
The joint procedure comprising filter determination and pulse optimization is conducted itera-
tively, behaving thus as a closed-loop system. Although some analysis-by-synthesis methods,
similar to Code-Excited Linear Prediction (CELP) speech coding algorithms [3], have already
been proposed for speech synthesis, e.g. [2], the present approach targets natural residual instead
of speech and assumes the error of the system as the unvoiced component of the excitation.

The remaining of this report is organized as follows: Section 2 introduces the idea of the
proposed excitation approach for HMM-based speech synthesis; Section 3 concerns the problem
formulation; Section 4 shows how the state-dependent filters can be calculated; Section 5 describes
pulse train optimization procedure; Section 6 regards the closed-loop algorithm used for filter

computation and pulse optimization; and the conclusions are given in Section 7.
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Figure 1: Proposed excitation scheme.
2 Theidea

The excitation scheme proposed is depicted in Figure 1. The excitation s{gnas constructed
by the addition of the pulse trair{n), and white noisew(n), filtered respectively by the state-

dependent voiced and unvoiced filtefs,(z) and H,(z). Their transfer functions are given by

Hy(z)= Y h(l)z™, (1)
1=—2

K
— @

1- Zg(l)z_l
=1

whereM and L are the respective the orders. As it can be notice from the illustration, the filters

H,(z)

are associated with each stgte ..., S’}.

2.1 Function of H,(z)

The voiced filterH, (z) transforms the pulse trairin) into the voiced excitation(n), which is as
close as possible to the residual sequerieg. This idea is closely related to the adaptive filtering

theory, considering the system identification problem.
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Figure 2. Re-arrangement of the excitation part: input correspond to pulse train and residual

whereas white noise is produced at the output.

The property of having a finite impulse response leads to stability. Further, since the final
waveform is synthesized offline, an anti-causal structure might achieve better performance through

the processing of delayed and advanced samples.

2.2 Function of H,(z)

Since white noise with zero mean and unit variance is the input of the unvoiced filter, the function
of H,(z) is, therefore, to remove the remaining long-term correlation (assuming that the residual
e(n) has no short-term correlation) from the difference signal) = e(n) — v(n). For this
purpose the all-pole structure based on LP coefficients shown in (2) is a good choice, due to its
simplicity in terms of computational complexity. However, in order to perform as expected the

orderL should be set at least for three pitch periods.

3 Excitation training: problem formulation

Through the re-arrangement of the excitation construction block of Figure 1, Figure 2 can be
obtained. In this case pulse train and speech residual represent the input of the system whereas
white noise is the output, as a result of the filteringu¢f.) through the inverse unvoiced filter
G(z).

By observing the system shown in Figure 2, an analogy with analysis-by-synthesis speech
coders [3] can be made as follows. The target signal is represented by the regidutie error
of the system isv(n), and the terms whose incremental modification can minimize the power of
w(n) are the filters and pulse train. Therefore, according to this interpretation, the problem of

achieving an excitation signal whose waveform can be as close as possible to the residual would



consist in:
1. the determination of the filteld,(z) and H,(z);
2. optimization of the positiongp1,...,pz}, and amplitudesfay, ..., az}, of t(n).

In the next two sections, the procedures in which the state-dependent filters are determined

and pulse trains are optimized are described.

4 Filter determination

The filters are determined in a way to maximize the likelihood of the residjixen the proposed
model of Figure 1. Therefore, the first step is to achieve an expression for the likelihe6d) of

which involvesH,,(z), H,(z) andt(n), and eventually maximize it with respect to the filters.

4.1 Likelihood of the residuale(n) given the excitation model

According to Figure 2 pulse train and speech residual correspond to the input of the system

whereas white noise is the output, after being filtered by the inverse unvoiced filter

L
G) = g = > ()= €
where
l, 1 =0,
g(i) = f@ (4)
St 1<i<L

If we consider the vectow = [w(0) ---w(N — 1)]7 - whereN is the database length in
number of samples and” means transposition - as white noise, the probability distribution of

the unvoiced excitation vectar = [u(0) - - - u(N — 1)]7 given the unvoiced filtefl, (z) is

PlulH,(2)} = e 3R (5)

@ONR]

N|=

where the covariance matrR is

r(N—-1) ... (0

!Obtained from the speech corpus by inverse filtering. The residual signals are extracted so as to present flat

spectrum with unit power.



and the autocorrelation sequences), is given by

r(n) ! /7T |H, (e7)|?e? " duw. (7)

:% .

If we makeu = e — v in (5), the likelihood ofu given H,(z) becomes the likelihood af given
H,(z) and H,(z) since the voiced excitation vecter = [v(0)...v(N — 1)]7 is deterministic.
Thus,

1

P{elH,(z),Hu(2)} = (277)1\7‘R|6%[GV]TR1[6‘,]’ ®)

becomes the likelihood of the residual and consequently the function which must be minimized

through the determination of the voiced and unvoiced filters. By taking the logarithm of (8), the

following expression for the log likelihood is obtained
N 1 1 T 1
log P{e|H,(z),Hy,(2)} = 5 log 2 — 3 log |IR| — 5[6 —v] R [e—v]. 9)
For the derivation of the vector of coefficients for the voiced fif&g(z),
T
hi= [n(54) - m ()] (10

and the coefficients of the unvoiced filtéf,(z), {g:(1),..., (L)}, with the related gairk;,
for a specific state, the log likelihood of the residual written in a form which dependgrand

{Ki,gi(1),...,9:(L)} should be taken into account.

4.1.1 Relationship betweeR and G(z)

SinceG(z) = H, (z), then
R!'=GTqG, (11)
whereG corresponds to th& x N overall impulse response matrix of the inverse unvoiced filter

G(z) including all the states,

_éw 0 0 0 0 o |
0 G,; © 0 0 0
0 0 G, O 0 0
G=| 0 0 0 Gy O 0 : (12)
0 0 o0 0 Gy 0
0 0 o0 0 0 - Guji

with 0 being a null matrix of any dimension. In this case, the matriges, Gy ;, Gy j, G,

contain the impulse responses of the filt&rz) for the j-th segments of the statésk, n, andm,



respectively. For instancé; ;, with dimension(N; ; + L) x N; j, whereN; ; is the length of the

j-th segment of the statehas the following shape:

_ 4i(0) 0
Gij= | Gi(L) :(0) | (13)
I 0 gi(L) |

where{g;(0),...,g:(L)} is the(L+ 1)-size impulse response sequence of the filter) for state

7.

4.1.2 The voiced excitation vectox

Because there is a different voiced filter for each state, the overall voiced excidataiven by

S
v=Aih; + ...+ Aghg =) Ah;, (14)

=1
whereS is the total number of states. The teAy is the overall pulse train matrix where only the
pulse train samples belonging to the staé®e non-zero. For example, considering the case of the

j-th segment of the-th state, shown in (12), the corresponding mafixwould be

A=A (15)

where the(M + 1) x (N; j + M) matrix A; ; is

t:.3(0) 0
tii () o ti;(0)
A= : : : (16)
tij(Nij— 1) tij(4)
i 0 o i (Nig—1) ]




The vector{t; ;(0) - - - t, ;(IV; ; — 1)} corresponds to the pulse train for thieh segment of state

i, and the overall pulse train matriX is given by
s
A=A+.. . +As=> A, (17)
=1

4.1.3 Likelihood ofe(n) in terms of h;, A; and G
By substituting (11) and (14) into (9), the following expression for the log likelihood is finally

obtained

N 1
log P{e|H,(z),Hy(2)} = 5 log 2m + 3 log|GTG|-

1 5 ' >
-3 le - ZA,-hZ-] G'G [e - ZAihi] , (18)
1=1

=1

which corresponds to the term to be maximized along the process for the computation of the filters.

4.2 Determination of the voiced filter H,(z)

To determine the impulse responsefdf(z) for a particular state, the vector of coefficienth;

which maximizes the log likelihood in (18) can be obtained from

0log P [e|Hy(2), Hy(2)]

= 1
o 0, (19)
which results into the following linear system
Xih; =y, (20)
where
X; =ATGTGA,, (21)
S
yi =ATGTG |e — Z Azhg | . (22)
k=1

k#i
Therefore, if thg M + 1) x (M + 1) matrix X; is singular the solution foh; is unique. In fact,
(20) corresponds to the least-squares formulation for the design of a filter through the solution of

an over-determined linear system [7].



4.2.1 Segment basis

Since the matrid; is as shown in (15)X; andy; can thus be written as

X; ZATGTG A, (23)
S Ng

yi= ZAT GliGij |eij— > > Aphgl|, (24)
k=11=1

ki

whereN; andN;, are the number of segments which belong to the staedk, respectively. The
(Ni,j + M + L) X (NiJ' + M) matrix Gi,j is

Gij = [GP

4,3

G, G (25)

WhereGﬁ j andG; ; contain, respectively, impulse responses of the inverse unvoiced filters whose
states are covered b%( samples before and after segmgiaf statei. Finally, the residual vector

for the j-th segment of the statee; ;, is given by
e = les (-4) e N+ Y 1) @9)

4.3 Determination of H,(z)

To visualize the problem for the computation of the coefficientdigfz), another expression
which may represent the log likelihood function should be considered.

It can be noticed that

2
e—v]IRlfe—v]=ulGTGu=wlw = 12N l{u —ig(l) —l)} ,  (27)
k=0 =1
and it can be verified [9] that
N-1 o N-1 K
R| = k]:IO () = ,Eo - 2 (28)

1= g(l)e 7t

=1

If we substitute (27) and (28) into (8), and take the logarithm of the resulting expression, the log

likelihood function becomes

N-1
log P{e|H,(z)} = Z log |1




SinceG(z) is minimum-phase, the first term in the right side of (29) becomes zero. By making

Olog P{e[Hu(2)}

5K =0, (30)
the gaink’,,, which maximizes (29) can be derived,
Km = VEm, (31)

where the minimum energy,, is given by

L 2
€m = min u(k) — . 32
9(1),.. 7g(l){ Zg } (32)

Therefore, the problem can be interpreted as the autoregressive (AR) spectral estimgtigriis,
9, 6].

4.3.1 Segment basis

To perform state-dependent AR spectral analysis (LP analysis}ore mean autocorrelation (or
covariance) sequence representing each corresponding state should be taken into account. Among

several methods, the following ones are considered:

e method 1: considering all segments of a particular statess ensembles of a wide-sense
stationary process, the mean autocorrelation function éan be computed as the average
of all short-time autocorrelation functions from all the segments belongingnaking an

analogy to the method presented in [20] for the periodogram), i.e.,

oi(k) &i, (33)
B FZZZ sk

whereg, ; (k) is the short-term autocorrelation sequence obtained fron-thenalysis
frame of thej-th segment of the statg F; is the number of analysis frames, aigis the

number of segments of state

e method 2: the mean autocorrelation sequence is derived as the average from all the “seg-

mental” sequences,
N;

F
Niz Z il (34)

Finally, the coefficient§g;(1), ..., g:(L)} can be derived from; (k) by using, e.g., the Levinson-
Durbin algorithm, withK; being the corresponding LP gain [12].

10
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Figure 3: Scheme for the amplitude and position optimization of the non-zero samp(es.of

5 Pulse optimization

As the filters are determined through a closed-loop algorithm, the pulse positions and amplitudes
of t(n) are optimized. The procedure is conducted by keepip(r) and H,(z) for each corre-

sponding state constant, and minimizing the mean squared error of the system of Figure 2,
e=wlw. (35)

It can be noticed that considering the pulse optimization this error minimization is the same as
maximizing (8).

The goal of the pulse optimization is to approach) to e(n) as much as possible, in a
way to remove the short and long-term correlation:f) during the filter computation process.
The procedure is carried out in a similar way to the approach employéduttipulse Excited
Linear Predictionspeech coders [3]. These algorithms attempt to construct glottal excitations
which can synthesize speech by using a few position and amplitude optimized pulses. In our
particular case, the optimization is performed in the neighborhood of the pulse positions, that are

firstly obtained from pitch marks.

5.1 The procedure

To visualize the way the pulses are optimized, Figure 3 should be considered. The error of the
systemw is given by
w=e¢e; — vy, = Hgt, (36)

where
T
e, = [eg(o) o eg(N—1) - eg(N+L)] : (37)

is the N + L length vector containing the overall residual sige(al) filtered byG(z). The impulse
response matrikl, is

H, = {hgl hgy - th+L—1} ) (38)

11



with each respective column given by

T
hgj:[() 0 hg(—%) hg(%—kL) 0 --- 0} .

The vectort contains non-zero samples only at certain positions, i.e,
T
t= [() o 0 a; 0 - 0 ajpq - 0} .
Therefore, the voiced excitation vectoican be written as
z
vV = Hgt = Z aihgi,
=1
where

{ala” . ,(IZ},

{pla" . 7pZ}7

are respectively th& amplitudes and positions ofr) which are aimed to be optimized.

5.1.1 Amplitude determination

The error to be minimized is
e=wlw=[e, — Hyt|" [e, — Hyt].

Substituting (41) into (44), the following expression results

Z
_ ol h .
eE=e ey — 2ey g ajhg;
i=1

Z z Z
+) athlhg + > ahg | ashy;
17gi gt 177g1 77797
=1 =1 7j=1
E

The optimal pulse amplitude; which minimizes (44) is thus given by

Oe
8@1' N 07

which leads to
Z
T
hy; |eg— Z ajhg;
j=1

J#i
T
hZh,,;

gt

a; =

12

(39)

(40)

(41)

(42)
(43)

(44)

(45)

(46)

(47)



5.1.2 Position determination

By substituting (47) into (48), an expression for the error considering the optimal amplitude is

achieved,

Z z
— T T o 21T
Ea = €5€g — 2€, E ajhg; + g ajhg;hg;+
J=1 Jj=1

i i
2
z
T
hy; leg — E :ajhgj
z 4 =1
T J#i
—|—E ajhgj E arhg, | — W h. , (48)
j=1 r=1 gi g
J#i r#J

where it can be seen that the only term which depends; @ the last one. Therefore, the best
positionp; is that one which minimizes,, that is,

2

Z
T
hgi €g — E :ajhgj
j=1

i

p; = arg max

49
pi=1,...N hlh,; (49)

6 Closed-loop algorithm

The overall procedure for the determination of the filt&fg2) and H,(z), and optimization of
the positions and amplitudes tifn) is described in Table 1. Pitch marks may represent the best
choice to construct the initial pulse traifis:). The convergence criterion is the variation of the

voiced filter coefficients.

7 Conclusion

This report introduces a novihinable excitation scheme for HMM-based speech synthesis. The
proposed technique consists in determining voiced and unvoiced filters for each predefined state
which may be represented, for instance, by leaves of phonetic decision-trees for mel-cepstral co-
efficients. Some experiments have shown that this new approach can synthesize speech without
the artifacts imposed by the conventional simple excitation model. Furthermore, since the scheme
in question is derived through an iterative procedure in which the distortion between constructed
excitation and residual sequences is minimized, synthesized speech sounds closer to its natural

version.

13



Table 1. Algorithm for joint filter computation and pulse optimizatidr. means identity matrix

of X x X order.
t(n) initialization

1) For each utterande= 1to! = U do
1.1) Initialize{p;,, ..., p1, } based on the pitch marks
1.2) Optimize{p;,, ..., } according to (49), consideridy = Ini 41

1.3) Calculate{q,, . . ., a;, } according to (47), considerirldy = Inia41

H,(z) initialization

1) For each state from= 1toi = S do
1.1) ComputeX; andy; according to (23) and (24), considerifg ; = In, ;+m+L
1.2) Obtain initialh; by solvingX;h; = y;
2) Set voiced filter variation tolerance;
3) Set the number of iteration&/jier and Niter,, oo
Recursion
1) For each state from= 1toi = S do
1.1) Makeh;* = h;
1.2) Makes,, = 0
1.3) ComputeX; andy; according to (23) and (24)
1.4) Obtainh; by solvingX;h; = y;
1.5) Compute the voiced filter variatian = ¢, + (h;* — h;)” (h;® — h;)
2) For each state frorh= 1toi = S do
2.1) Obtain the mean autocorrelatign(k) according to (33) or (34)
2.2) Computeg; and K; using the Levinson-Durbin algorithm

3) If ey < € OF Njjgr = , go to (6)

itermax
4) For each utterande= 1to U do
4.1) Optimize{py,, ..., pz } according to (49)
4.2) Calculat€{a,,, . .., az } according to (47)
5) Return to (1)

6) End
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