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Introduction

f ( ’90 )Rule-based, formant synthesis (~’90s)
– Hand-crafting each phonetic units by rules

Corpus-based, concatenative synthesis (’90s~)
– Concatenate speech units (waveform) from a database

• Single inventory: diphone synthesis
• Multiple inventory: unit selection synthesis

C b d t ti ti l t i th iCorpus-based, statistical parametric synthesis
– Source-filter model + statistical acoustic model

Hidd M k d l HMM b d th i• Hidden Markov model: HMM-based synthesis

How we can formulate and understand the whole 



corpus-based speech synthesis process in a 
unified statistical framework?



Problem of speech synthesis

We have a speech database, i.e., a set of texts and 
fcorresponding speech waveforms.

Given a text to be synthesized, what is the speech 
waveform corresponding to the text?waveform corresponding to the text?
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: texts
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B i f k f di ti

Statistical formulation of speech synthesis (1/8)
Bayesian framework for prediction

: speech waveforms

: set of texts
database

Given

f

: speech waveforms

: text to be synthesized

Given

k

1. Estimate predictive distribution given variables

: speech waveform unknown
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p g
2. Draw sample from the distribution



Statistical formulation of speech synthesis (2/8)

1. Estimating predictive distribution is hard 
 Introduce acoustic model parameters

generation training

: acoustic model (e.g. HMM            )

generation training





Statistical formulation of speech synthesis (3/8)

2. Using speech waveform directly is difficult 
 Introduce parametric its representation

: parametric representation of speech waveform
(e.g., cepstrum, LPC, LSP, F0, aperiodicity)





Statistical formulation of speech synthesis (4/8)

3. Same texts can have multiple pronunciations, POS, etc. 
 Introduce labels

: labels derived from text 
( POS l i l t )



(e.g. prons, POS, lexical stress, grammar, pause)



Statistical formulation of speech synthesis (5/8)

4. Difficult to perform integral & sum over auxiliary variables 
 Approximated by joint max





Statistical formulation of speech synthesis (6/8)

5. Joint maximization is hard 
 Approximated by step-by-step maximizations





Statistical formulation of speech synthesis (7/8)

6. Training also requires parametric form of wav & labels 
 Introduce them & approx by step-by-step maximizations

: parametric representation of speech waveforms
l b l d i d f t t



: labels derived from texts



Statistical formulation of speech synthesis (8/8)





Overview of this talk

1. Mathematical formulation
2. Implementation of individual components
3. Examples demonstrating its flexibility
4. Discussion and conclusion4. Discussion and conclusion





HMM-based speech synthesis system
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HMM-based speech synthesis system
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HMM-based speech synthesis system
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Human speech production

Modulation of carrier wave
by speech information

Speech
Frequency

transfer
characteristics

Sound source
Voiced: pulse
Unvoiced: noise

Magnitude
start--end

Fundamental


air flow

Fundamental
frequency



Source-filter model

LinearExcitationPulse train

Source excitation part Vocal tract resonance part

time-invariant
system
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ML estimation of spectral parameter

M

Mel-cepstral representation of speech spectra
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Waveform reconstruction

Original speech

Mel-cepstrumUnvoiced / voicedF0

P l t i

Excitation

Pulse train

reconstructed speech

Synthesis filter
)(zH

)(ne )(nx
Excitation

White noise
reconstructed speech)(zH


These speech parameters should be modeled by HMM



HMM-based speech synthesis system
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Hidden Markov model (HMM)

11a 22a 33a
ija : state transition probability
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Structure of state output (observation) vector

Spectral parameters
(e.g., mel-cepstrum, LSPs)

Spectrum part

( g p )





Excitation part

log F0 with V/UV
Excitation part 

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Observation of F0

1
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0
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Unable to model by continuous or discrete distributionsUnable to model by continuous or discrete distributions
⇒ Multi-space distribution HMM (MSD-HMM)
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Multi-space probablity distribution HMM
(MSD-HMM)
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MSD-HMM for F0 modeling

1 2 3HMM for F0

1,1w 1,2w 1,3w
1
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Voiced / Unvoiced weightsVoiced / Unvoiced weights
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Structure of state-output distributions
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Contextual factors
Phoneme

 {preceding, succeeding} two phonemes 
 current phoneme

SyllableSyllable
 # of phonemes in {preceding, current, succeeding}  syllable
 {accent, stress} of {preceding, current, succeeding} syllable
 Position of current syllable in current word

# f { di di } { t d t d} ll bl i t h # of {preceding, succeeding} {accented, stressed} syllable in current phrase
 # of syllables {from previous, to next} {accented, stressed} syllable
 Vowel within current syllable

Word
 Part of speech of {preceding, current, succeeding} word
 # of syllables in {preceding, current, succeeding} word
 Position of current word in current phrase
 # of {preceding, succeeding} content words in current phrase# of {preceding, succeeding} content words in current phrase
 # of words {from previous, to next} content word

Phrase
 # of syllables in {preceding, current, succeeding} phrase



Huge # of combinations ⇒ Difficult to have all possible models
…..



Decision tree-based state clustering [Odell; ’95]

k-a+b yes no
R=silence?

L=voice?

L=“w”?
t-a+h

…

…

yes

yesyes

yes no

no

no

no

L=“gy”?R=silence?s-i+n

…

yy

C=unvoice?
C=vowel?
R=silence?
R=“cl”?
L=“gy”?
L=voice? Sharing the parameter of HMMs in same leaf node… Sharing the parameter of HMMs in same leaf node





S & ff

Stream-dependent tree-based clustering (1)

Spectrum & excitation have different context 
dependency Build decision trees separately

Decision treesDecision trees
for

mel-cepstrum

Decision trees
for F0 
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State duration modeling

HMM (Hidden Markov Model)
– State duration prob. depends only on transition prob.
– State duration probability exponentially decreases

HSMM (Hidden Semi Markov Model)
– HMM + explicit duration model ⇒ HSMM

3-demensional Gaussian
1q 2q 3q

3 demensional Gaussian
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Stream-dependent tree-based clustering (2)

State duration
model

Three dimensional Gaussian

HMM

model

D i i t

HMM

Decision tree
Decision trees

for
mel-cepstrum

for state dur.
models

Decision trees
for F0
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for F0 



HMM-based speech synthesis system
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Composition of sentence HMM for given text

TEXT
G2P

POS tagging

w

Text analysis
POS tagging

Text normalization

Pause prediction

context-dependent label 
sequence l̂

 
sentence HMM given labels

This sentence HMM gives )ˆˆ|( λlopThis sentence HMM gives ),|( λlop



Speech parameter generation algorithm [Tokuda; ’00]

For given sentence HMM, determine a speech parameter 
vector sequence                                  which maximizesTTTT ],,,[ 21 Toooo 
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Determination of state sequence
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Speech parameter generation algorithm

For given HMM    ,determine a speech parameter vector
Sequence                                  which maximizes

λ
TTTT ],,,[ 21 Toooo 
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Without dynamic feature

becomes a sequence of mean vectors
⇒ discontinuous outputs between states



⇒ discontinuous outputs between states



Dynamic features
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Integration of dynamic features

Relationship between speech parameter vectors & 
static feature vectors

Wo cW
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Solution for the problem (1/2)
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Solution for the problem (2/2)
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Generated speech parameter trajectory
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Trajectory HMM

is not a proper distribution of c),|(),|( lWcλlo PP 
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⇒ improving the model accuracy



Generated spectra
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Generated F0
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Effect of dynamic features

Mel-cepstrum

static+
static2

static+
Smooth!
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log F0
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Overview of this talk

1. Mathematical formulation
2. Implementation of individual components
3. Examples demonstrating its flexibility
4. Discussion and conclusion4. Discussion and conclusion





Emotional speech synthesis

text neutral angry

「授業中に携帯いじってんじゃねえよ！

電源切っとけ！」

“Don’t touch your cell phone during aDon’t touch your cell phone during a 
class!  Turn off it!”

「ミーティングには毎週参加しなさい！」「ミ ティングには毎週参加しなさい！」

“You must attend the weekly meeting!”

trained with 200 utterances



Speaker adaptation (mimicking voices)

MLLR-based adaptation
Adaptation

data
speaker A

Speaker-independent Adapted modeladaptation

w/o adaptation (initial model)
Adapted with 4 utterancesAdapted with 4 utterances
Adapted with 50 utterances
S k A’ k d d t tSpeaker A’s speaker-dependent system

？



Speaker interpolation (mixing voices)

Linear combination of two speaker-dependent models

Model A Model B
Interpolated model

1.00 0.75 0.50 0.25 0.00A:

0.00 0.25 0.50 0.75 1.00B:



Voice morphing

Two voices:
 

 

Four voices:
 



Interpolation of speaking styles

Base model A Base model B

Interpolation extrapolation

Neutral High Tension



Eigenvoice (producing voices) [Shichiri; ’02]

Speaker 1 Speaker 2 Speaker S

μ )1(e ( )ke ( )Ke

System OverviewClick here for a demo



Multilingual speech synthesis
J• Japanese

• American English
• Chinese (Mandarin) (by ATR)( ) ( y )
• Brazilian Portuguese (by Nitech, and ＵＦＲＪ)
• European Portuguese (by Nitech, Univ of Porto, and UFRJ)
• SlovenianSlovenian 

(by Bostjan Vesnicer, University of Ljubljana, Slovenia)
• Swedish (by Anders Lundgren, KTH, Sweden)
• German (by University of Bonn and Nitech)• German (by University of Bonn, and Nitech)
• Korean (by Sang-Jin Kim, ETRI, Korea)
• Finish (by TKK, Finland)
• Baby English (by Univ of Edinburgh, UK)
• Polish, Slovak, Arabic, Farsi, Croatian, Polyglot, etc.



Singing voice synthesis [Oura; ’10] (1/2)
MusicXMLMusicXML

Trained HMMs Male:

Female:

Musical score Singing voice
database

Synthesized
singing voice

Male:

Female:

Ad t ti



Adaptation:



Overview of this talk

1. Mathematical formulation
2. Implementation of individual components
3. Examples demonstrating its flexibility
4. Discussion and conclusion4. Discussion and conclusion





Inclusion of all components

Problem of statistical parametric speech synthesis
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Relaxing approximations

Marginalizing model parameters
Variational Bayesian acoustic modeling for speech synthesis 
[N k k ’03][Nankaku;’03]

Marginalizing labels
J i t f t d / b k d d l t i i [O ’08]Joint front-end / back-end model training [Oura;’08]

Inclusion of waveform generation part
W f l l t ti ti l d l [M i ’10]Waveform-level statistical model [Maia;’10]





Summary

Statistical approach to speech synthesis

• Whole speech synthesis process is described in a 
statistical framework

• It gives a unified view and reveals what is correct 
and what is wrongg

• Importance of the database
Future workFuture work
• Still we have many problems should be solved:

• Speech waveform modeling• Speech waveform modeling
• Combination with text processing part, etc.





Final message

I h th i bl ?Is speech synthesis a messy problem?

Let us join speech synthesis research!



Thanks!
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