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Introduction

Rule-based, formant synthesis (~’90s)
— Hand-crafting each phonetic units by rules

Corpus-based, concatenative synthesis (’90s~)

— Concatenate speech units (waveform) from a database
e Single inventory: diphone synthesis
» Multiple inventory: unit selection synthesis

Corpus-based, statistical parametric synthesis

— Source-filter model + statistical acoustic model
e Hidden Markov model: HMM-based synthesis

How we can formulate and understand the whole
corpus-based speech synthesis process in a
unified statistical framework?




Problem of speech synthesis

We have a speech database, I.e., a set of texts and
corresponding speech waveforms.
Given a text to be synthesized what is the speech
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W :texts ]
— database _
X : speech waveforms — Given
W : text to be synthesized
X : speech waveform < ?



Statistical formulation of speech synthesis (1/8)

Bayesian framework for prediction

sampling

Draw x from p(x | w, X, W) :

- D W, X, w
W : set of texts ? ?
— database ,
X : speech waveforms | — Glven
w : text to be synthesized
Z : speech waveform < unknown

1. Estimate predictive distribution given variables
2. Draw sample from the distribution



Statistical formulation of speech synthesis (2/8)

1. Estimating predictive distribution is hard ®
- Introduce acoustic model parameters

p(z | w, X, W)
|} introduce acoustic model A 0888@

_ /p(a:,)\ |w, W, X)d\ — /p(a: L, Np(\ | W, X)d

generation training

)\ : acoustic model (e.g. HMM 8880 )



Statistical formulation of speech synthesis (3/8)

2. Using speech waveform directly is difficult ®
- Introduce parametric Iits representation

ple | w, X, W) )
/(a:|w)\) (A | X, W)d Ww i

|} introduce parametric representation of speech o

_ / / p(x | 0)p(o | w, \p(A | X, W)dAdo

O : parametric representation of speech waveform x
(e.g., cepstrum, LPC, LSP, FO, aperiodicity)



Statistical formulation of speech synthesis (4/8)

3. Same texts can have multiple pronunciations, POS, etc. ®
- Introduce labels

plx | w, X, W)
_ / / p(x | 0)p(o | w, p(\ | X, W)dAdo

|l introduce labels derived from texts, I & L

_ / / S p(@ | 0)p(o | 1, ) P(L | w)p(A | X, W)dAdo

[ : labels derived from text w
(e.g. prons, POS, lexical stress, grammar, pause)
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Statistical formulation of speech synthesis (5/8)

4. Difficult to perform integral & sum over auxiliary variables ®
—> Approximated by joint max

plx | w, X, W)
— [ S p@] 0plo | L NP wip(r | X W)drdo
7
|l approximate integral & sum by joint max
~ p(z | 6)p(6 | I, \)P(l | w)p(A | X, W)
where

{6,i,A} = argmaxp(@ | o)p(o | L, ) P(l | w)p(A | X, W)




Statistical formulation of speech synthesis (6/8)

5. Joint maximization is hard ®
-> Approximated by step-by-step maximizations

Q>

{

1A} = argmaxp(@ | o)p(o | L, P(L | w)p(A | X, W)

| approx joint max by step-by-step max

A = arg mAapr()\ | X, W) < training

[ = arg max P(l | w) < text analysis

6 = argmaxp(o | I, \) < speech parameter generation
o




Statistical formulation of speech synthesis (7/8)

6. Training also requires parametric form of wav & labels ®
- Introduce them & approx by step-by-step maximizations

A= argmf,xp()\ | X, W)
4
L = arg max P(L | W) < labeling
O = arg max p(X | O) < feature extraction
A = arg max p(O | L, \)p(N) < acoustic model training

O . parametric representation of speech waveforms X
L : labels derived from texts W



Statistical formulation of speech synthesis (8/8)

Draw z from p(x | w, X, W)

i

O = arg max p(X | O) « feature extraction
L =arg max P(L|W) < labeling
A = arg mgxp(OA | L, \)p(\) « acoustic model training
[ = arg max P(l | w) « text analysis
0 = arg max p(o [ 3\) «< speech parameter generation
x from p(x | ) <« waveform reconstruction
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Overview of this talk

1. Mathematical formulation G
2. Implementation of individual components <=
3. Examples demonstrating its flexibility e
4. Discussion and conclusion (==
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HMM-based speech synthesis system

i i

Speech signal ini |
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HMM-based speech synthesis system

Speech signal

Training part

! —
5 ICSPEECH
i DATABASE

L= argmax P(L|W,A) e
L

on

O = arg mgxp(X | O)

oNn 7

' Excitation |

[ EXUACUOIT |
Spectral

: parametersl | parameters
Labels | A =argmaxP(O| L, 1)
; y)
e A T
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HMM-based speech synthesis system

SPEECH>| Speech S|gr:al
DATABASB

O = arg mgxp(X | O)

I CAUTAUUIVUTI I I LATTAUULTUTT I

Excitation Spectral
parameters v parameters
EXcits 5 R Al
parar €Xr ~~ p(a: | O) pters
. SYNTHESIZED

generation

Filter SPEECH




Human speech production
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Frequency
transfer
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start--end

Fundamental

frequency

air flow

i1 Speech

Sound source

Voiced: pulse

Unvoiced: noise
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Source-filter model

Source excitation part

Pulse train —<L Excitation '

Vocal tract resonance part

rrrrrrr X en)
7

White noise

I————

Linear
time-invariant
system

H(2)

A

R R I

— Speech

X(n) =h(n)*e(n)
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ML estimation of spectral parameter

Mel-cepstral representation of speech spectra

H(z) =exp i c(m)z™"
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8 warped frequency
8 . mel-scale frequency
C;G 0 . |

Frequency @ (rad) -
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ML-estimation of mel-cepstrum

c =arg max p(x|c)

X : speech waveform (Gaussian process)
C : mel-cepstrum

17



Waveform reconstruction

4 .
Original speech g,
FO Unvoiced / voiced | | Mel-cepstrum
e
Pulse train /
ﬂ // S | 9,
ynthesis filter SRR Z
xcitation H (2) reconstructed speech
White n0|se e(n) X(ﬂ)
W ? )

%

These speech parameters should be modeled by HMM
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HMM-based speech synthesis system
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parameters
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Hidden Markov model (HMM)

J

b, (0,) : output probability

d.. : state transition probability
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Structure of state output (observation) vector

-

Spectrum part <

NS

Excitation part <

™~

_ Spectral parameters
(e.g., mel-cepstrum, LSPS)

A

- AA

|+ log FO with ViUV
A
AA
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Observation of FO

/ unvoiced voiced \

Q, =R’ Q, =R

T —

\\/“\ \

Log Frequency
s

; Time
N %
Unable to model by continuous or discrete distributions
= Multi-space distribution HMM (MSD-HMM)
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Multi-space probablity distribution HMM
(MSD-HMM)
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MSD-HMM for FO modeling

HMM for FO 1 2

Voiced / Unvoiced weights
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Structure of state-output distributions

s
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Contextual factors

Phoneme
- {preceding, succeeding} two phonemes
+ current phoneme

Syllable
- # of phonemes in {preceding, current, succeeding} syllable
{accent, stress} of {preceding, current, succeeding} syllable
Position of current syllable in current word
# of {preceding, succeeding} {accented, stressed} syilabie in current phrase
# of syllables {from previous, to next} {accented, stressed} syllable
Vowel within current syllable

Word
Part of speech of {preceding, current, succeeding} word
# of syllables in {preceding, current, succeeding} word
Position of current word in current phrase
# of {preceding, succeeding} content words in current phrase
# of words {from previous, to next} content word

Phrase
# of syllables in {preceding, current, succeeding} phrase

Huge # of combinations = Difficult to have all possible models



Decision tree-based state clustering [odel; '95]

/C:unvoice?\

C=vowel? ]

R=silence?

R:“CI”?

7

\\

SR 5 (&

Y

Sharing the parameter of HMMs in same leaf node
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Stream-dependent tree-based clustering (1)

Spectrum & excitation have different context
dependency = Build decision trees separately

Decision trees
for
mel-cepstrum

Decision trees Q' ]';3

J\.

Y4

for FO

4
4

d
4
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State duration modeling

HMM (Hidden Markov Model)

— State duration prob. depends only on transition prob.
— State duration probability exponentially decreases

HSMM (Hidden Semi Markov Model)
— HMM + explicit duration model = HSMM

_____________________________________

— 3-demensional Gaussian

1
J
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Stream-dependent tree-based clustering (2)

i Three dimensional Gaussian
State duration /\/\/KW
model _ J

HMM © - % éz\—o
| Decision tree

Decision trees for state dur.
for % g%( )% ?ﬁ models
mel-cepstrum

N
DN

Decision trees
for FO
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HMM-based speech synthesis system

[ ae8 oo |

o =argmax P(o | l, l) xt-dependent HMMs
. ate duration models

T Alalticticl yTllclTatlull

Labels . i from HMMs

Excitation Spectral
parameters | —] parameters




Composition of sentence HMM for given text

TEXT W

G2P

POS tagging

Text analysis

Text normalization

Pause prediction

context-dependent label
sequence [

l

sentence HMM given labels

This sentence HMM gives P(o|1,4)



Speech parameter generation algorithm [tokuda; '00]

For given sentence HMM, determine a speech parameter
T T TqT . ..
vector sequence o0 =|o,,0,,...,0;] which maximizes

P(o|1,2)=Y P(o|q,A)P(q|l,2)

~maxP(o|q,2)P(q|!,2)
q

U
[ qA:argmaxP(q|lA,i) ]
q

o0 =argmax P(o|q, 1)
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Determination of state sequence

P(ql1,2)=T] pi(d;)

1=1

-

N

p,(-) : state-duration distribution of 1-th state
d; : state duration of I -th state

K :# of states in a sentence HMM for |

~

)

Gaussian

pi(d'): N(di ‘mi’Giz) = 0, =
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Speech parameter generation algorithm

For given HMM 4,determine a speech parameter vector
Sequence 0 =[0,,0,,...,0;] which maximizes

P(o|1,2)=Y P(o|q,A)P(q|l,2)

~maxP(o|q,2)P(q|!,2)
q

U
g = arg max P(q|lA,i)
q

[ 5:argm9xP(o|é,i) }
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Without dynamic feature

/sil/ /al /il /sil/
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becomes a sequence of mean vectors
= discontinuous outputs between states
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Dynamic features

oc,
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Integration of dynamic features

Relationship between speech parameter vectors &
static feature vectors
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Solution for the problem (1/2)

/0
—— R
ologP(We|q, 1)
oc

By setting
O,

we obtain
Tw -1 - Tw -1
WIS We=W"E u.
where
T T TT
c=|c ,c,,....,c; ]

T T T T
Hi =Lmg b, ]

T T T 7T
X =12, 2, 2 ]
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Solution for the problem (2/2)

>t
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Generated speech parameter trajectory

/s1l/ /a/ /1/ /s1l/

N TN N SN TN NN TN N N

2000 0000020010402 0,L0

Frame number



Trajectory HMM

P(o|l,2)=P(Wc|l,A) is not a proper distribution of ¢

Conventional HMM

Trajectory HMM

Training

argmax P(O] L, A)

arg max P(C| i,z)

Synthesis

argmax P(o |1, 2)|, .

=arg max P(c| lA,i)

argmax P(c | l i)
y)

Solve inconsistency between training & synthesis

= Improving the model accuracy
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Generated spectra
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Generated FO

\

N

natural speech \

Mmmm

Frequency
= PN

g1 O U0

o O oo

tlme (s)

— without dynamic features —

Frequency

2 (Mnhny

t|me (s)

Frequency
P PN
U'I OU‘IO

= D0

tlme (s)

with dynamic features N
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Effect of dynamic features

Mel-cepstrum

static; .
A+ A static

static+

2 Q) 9
A+ A Smooth!
log FO
static @), o),
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Overview of this talk

1. Mathematical formulation
Implementation of individual components

. Examples demonstrating its flexibility
Discussion and conclusion
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Emotional speech synthesis

text neutral angry
ZREPITEFDLC>TALPRAK ! g 4
BIRUIS&ET ! ]
“Don’t touch your cell phone during a
class! Turn off it!”
[E—FT4 T (CIFEASMUGESE ! ] 4 4

“You must attend the weekly meeting!”

trained with 200 utterances



Speaker adaptation (mimicking voices)

MLLR-based adaptation

—
Adaptation

4 N data 4 N
: : : : speaker A : : : :
g

\Speaker-independentj adaptation \_ Adapted model )

w/o adaptation (initial model) &
Adapted with 4 utterances $
Adapted with 50 utterances §

Speaker A’s speaker-dependent system ¢ ~

" d



Speaker interpolation (mixing voices)

Linear combination of two speaker-dependent models

%”@@“%

\_ Model A J \_ Model B J

Interpolated model

- /
A: 1.00 075 050 025 0.00
¥ Y N N N

B: 0.00 0.25 0.50 0.75 1.00



Voice morphing

TwoO volices:
Jd Ao B

A CEEEEEEEEB @

Four voices:

Malal




Interpolation of speaking styles

Base model A Base model B

Interpolation extrapolation

<—m I, >

Neutral High Tension



Eigenvoice (producing voices) [Shichiri; '02]

Speaker 1 Speaker 2 Speaker S
4 N\ ) 4 h
883 84834 884

/ &. {. o o o \. {. 8 8 8
\

< =) S — ) N~—oa—"~

4 N\

Supervector 1 ) ( SupervectorZ ) ° ° ( SupervectorS

@\sx 4

Mean Calculation

Cun ) L@ Ce®@] -+ [e®)],

Meanvector Eigenvectors

.

Y

Click here for a demo




Multilingual speech synthesis

e Japanese & ¢

e American English & & & € &

e Chinese (Mandarin) (by ATR) &:

* Brazilian Portuguese (by Nitech, and UFRJ) &

« European Portuguese (by Nitech, Univ of Porto, and UFRJ) &

e Slovanian
(by Bostjan Vesnicer, University of Ljubljana, Slovenia) &:
e Swedish (by Anders Lundgren, KTH, Sweden) & &:
 German (by University of Bonn, and Nitech) «:
« Korean (by Sang-Jin Kim, ETRI, Korea) « <
e Finish (by TKK, Finland) «
« Baby English (by Univ of Edinburgh, UK) &
e Polish, Slovak, Arabic, Farsi, Croatian, Polyglot, etc.



Singing voice synthesis [Oura; '10] (1/2)

MusicXML

Trained HMMs

ale: odl
008 remend

Musical score | =2 888 h Singing voice

database
Synthesized
singing voice
Male: @), Enap)e

' {0 s, “OMpy;
/ Female: § Ng an,,""‘ers
y Adaptation: @)

@‘2\
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Overview of this talk

1. Mathematical formulation
Implementation of individual components

. Examples demonstrating its flexibility
Discussion and conclusion
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Inclusion of all components

Problem of statistical parametric speech synthesis

Draw X from P(x|w, X, W)
YHP(x|c> P(c|1,4) P(|w,A)

Waveform generation Parameter generation Text processing
xP(4|C, L)

Posterior of model parameter
x P(L|W,A)P(C|X)P(A)didA dcdC
/ / N

Text processing  Speech analysis  Prior

56



Relaxing approximations

Marginalizing model parameters

=»Variational Bayesian acoustic modeling for speech synthesis
[Nankaku;’03]

Marginalizing labels

=» Joint front-end / back-end model training [Oura; 08]
Inclusion of waveform generation part

= Waveform-level statistical model [Maia; 10]

57



Summary

Statistical approach to speech synthesis

 Whole speech synthesis process Is described In a
statistical framework

|t gives a unified view and reveals what Is correct
and what is wrong

e |Importance of the database
Future work

 Still we have many problems should be solved:
e Speech waveform modeling
« Combination with text processing part, etc.
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Final message

Is speech synthesis a messy problem?

Nol

Let us join speech synthesis research!

Thanks!
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