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Introduction

f ( ’90 )Rule-based, formant synthesis (~’90s)
– Hand-crafting each phonetic units by rules

Corpus-based, concatenative synthesis (’90s~)
– Concatenate speech units (waveform) from a database

• Single inventory: diphone synthesis
• Multiple inventory: unit selection synthesis

C b d t ti ti l t i th iCorpus-based, statistical parametric synthesis
– Source-filter model + statistical acoustic model

Hidd M k d l HMM b d th i• Hidden Markov model: HMM-based synthesis

How we can formulate and understand the whole 



corpus-based speech synthesis process in a 
unified statistical framework?



Problem of speech synthesis

We have a speech database, i.e., a set of texts and 
fcorresponding speech waveforms.

Given a text to be synthesized, what is the speech 
waveform corresponding to the text?waveform corresponding to the text?
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B i f k f di ti

Statistical formulation of speech synthesis (1/8)
Bayesian framework for prediction

: speech waveforms
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Statistical formulation of speech synthesis (2/8)

1. Estimating predictive distribution is hard 
 Introduce acoustic model parameters

generation training

: acoustic model (e.g. HMM            )

generation training





Statistical formulation of speech synthesis (3/8)

2. Using speech waveform directly is difficult 
 Introduce parametric its representation

: parametric representation of speech waveform
(e.g., cepstrum, LPC, LSP, F0, aperiodicity)





Statistical formulation of speech synthesis (4/8)

3. Same texts can have multiple pronunciations, POS, etc. 
 Introduce labels

: labels derived from text 
( POS l i l t )



(e.g. prons, POS, lexical stress, grammar, pause)



Statistical formulation of speech synthesis (5/8)

4. Difficult to perform integral & sum over auxiliary variables 
 Approximated by joint max





Statistical formulation of speech synthesis (6/8)

5. Joint maximization is hard 
 Approximated by step-by-step maximizations





Statistical formulation of speech synthesis (7/8)

6. Training also requires parametric form of wav & labels 
 Introduce them & approx by step-by-step maximizations

: parametric representation of speech waveforms
l b l d i d f t t



: labels derived from texts



Statistical formulation of speech synthesis (8/8)





Overview of this talk

1. Mathematical formulation
2. Implementation of individual components
3. Examples demonstrating its flexibility
4. Discussion and conclusion4. Discussion and conclusion
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HMM-based speech synthesis system
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HMM-based speech synthesis system
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Human speech production

Modulation of carrier wave
by speech information

Speech
Frequency

transfer
characteristics

Sound source
Voiced: pulse
Unvoiced: noise

Magnitude
start--end

Fundamental


air flow

Fundamental
frequency



Source-filter model

LinearExcitationPulse train

Source excitation part Vocal tract resonance part

time-invariant
system
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ML estimation of spectral parameter

M

Mel-cepstral representation of speech spectra

d)







M

m

mzmczH
0

)(exp)(

en
cy

   
   

(r
ad





M

m

mzmczH
0

~)(exp)(

2


rp
ed

 fr
eq

ue

warped frequency
mel-scale frequency




 ~

1

1
1

1
~ je

z
zz 




 





2

ML ti ti f l t
W

ar

Frequency      (rad)
0 2/

ML-estimation of mel-cepstrum

)|(maxarg cxc p x : speech waveform (Gaussian process))|(maxarg cxc
c

p



c : mel-cepstrum



Waveform reconstruction

Original speech

Mel-cepstrumUnvoiced / voicedF0

P l t i

Excitation

Pulse train

reconstructed speech

Synthesis filter
)(zH

)(ne )(nx
Excitation

White noise
reconstructed speech)(zH


These speech parameters should be modeled by HMM



HMM-based speech synthesis system
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Hidden Markov model (HMM)
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ija : state transition probability
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Structure of state output (observation) vector

Spectral parameters
(e.g., mel-cepstrum, LSPs)

Spectrum part

( g p )





Excitation part

log F0 with V/UV
Excitation part 






Observation of F0
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Unable to model by continuous or discrete distributionsUnable to model by continuous or discrete distributions
⇒ Multi-space distribution HMM (MSD-HMM)





Multi-space probablity distribution HMM
(MSD-HMM)
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MSD-HMM for F0 modeling

1 2 3HMM for F0
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Structure of state-output distributions
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Contextual factors
Phoneme

 {preceding, succeeding} two phonemes 
 current phoneme

SyllableSyllable
 # of phonemes in {preceding, current, succeeding}  syllable
 {accent, stress} of {preceding, current, succeeding} syllable
 Position of current syllable in current word

# f { di di } { t d t d} ll bl i t h # of {preceding, succeeding} {accented, stressed} syllable in current phrase
 # of syllables {from previous, to next} {accented, stressed} syllable
 Vowel within current syllable

Word
 Part of speech of {preceding, current, succeeding} word
 # of syllables in {preceding, current, succeeding} word
 Position of current word in current phrase
 # of {preceding, succeeding} content words in current phrase# of {preceding, succeeding} content words in current phrase
 # of words {from previous, to next} content word

Phrase
 # of syllables in {preceding, current, succeeding} phrase



Huge # of combinations ⇒ Difficult to have all possible models
…..



Decision tree-based state clustering [Odell; ’95]

k-a+b yes no
R=silence?

L=voice?

L=“w”?
t-a+h

…

…

yes

yesyes

yes no

no

no

no

L=“gy”?R=silence?s-i+n

…

yy

C=unvoice?
C=vowel?
R=silence?
R=“cl”?
L=“gy”?
L=voice? Sharing the parameter of HMMs in same leaf node… Sharing the parameter of HMMs in same leaf node





S & ff

Stream-dependent tree-based clustering (1)

Spectrum & excitation have different context 
dependency Build decision trees separately

Decision treesDecision trees
for

mel-cepstrum

Decision trees
for F0 





State duration modeling

HMM (Hidden Markov Model)
– State duration prob. depends only on transition prob.
– State duration probability exponentially decreases

HSMM (Hidden Semi Markov Model)
– HMM + explicit duration model ⇒ HSMM

3-demensional Gaussian
1q 2q 3q

3 demensional Gaussian
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Stream-dependent tree-based clustering (2)

State duration
model

Three dimensional Gaussian

HMM

model

D i i t

HMM

Decision tree
Decision trees

for
mel-cepstrum

for state dur.
models

Decision trees
for F0



for F0 



HMM-based speech synthesis system
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Composition of sentence HMM for given text

TEXT
G2P

POS tagging

w

Text analysis
POS tagging

Text normalization

Pause prediction

context-dependent label 
sequence l̂

 
sentence HMM given labels

This sentence HMM gives )ˆˆ|( λlopThis sentence HMM gives ),|( λlop



Speech parameter generation algorithm [Tokuda; ’00]

For given sentence HMM, determine a speech parameter 
vector sequence                                  which maximizesTTTT ],,,[ 21 Toooo 
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Speech parameter generation algorithm

For given HMM    ,determine a speech parameter vector
Sequence                                  which maximizes

λ
TTTT ],,,[ 21 Toooo 
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Without dynamic feature

becomes a sequence of mean vectors
⇒ discontinuous outputs between states



⇒ discontinuous outputs between states



Dynamic features
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Integration of dynamic features

Relationship between speech parameter vectors & 
static feature vectors
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Solution for the problem (1/2)
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Solution for the problem (2/2)
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Generated speech parameter trajectory





Trajectory HMM
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⇒ improving the model accuracy



Generated spectra
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Spectra changing smoothly between phonemes



Generated F0
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Effect of dynamic features

Mel-cepstrum
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Overview of this talk

1. Mathematical formulation
2. Implementation of individual components
3. Examples demonstrating its flexibility
4. Discussion and conclusion4. Discussion and conclusion





Emotional speech synthesis

text neutral angry

「授業中に携帯いじってんじゃねえよ！

電源切っとけ！」

“Don’t touch your cell phone during aDon’t touch your cell phone during a 
class!  Turn off it!”

「ミーティングには毎週参加しなさい！」「ミ ティングには毎週参加しなさい！」

“You must attend the weekly meeting!”

trained with 200 utterances



Speaker adaptation (mimicking voices)

MLLR-based adaptation
Adaptation

data
speaker A

Speaker-independent Adapted modeladaptation

w/o adaptation (initial model)
Adapted with 4 utterancesAdapted with 4 utterances
Adapted with 50 utterances
S k A’ k d d t tSpeaker A’s speaker-dependent system

？



Speaker interpolation (mixing voices)

Linear combination of two speaker-dependent models

Model A Model B
Interpolated model

1.00 0.75 0.50 0.25 0.00A:

0.00 0.25 0.50 0.75 1.00B:



Voice morphing

Two voices:
 

 

Four voices:
 



Interpolation of speaking styles

Base model A Base model B

Interpolation extrapolation

Neutral High Tension



Eigenvoice (producing voices) [Shichiri; ’02]

Speaker 1 Speaker 2 Speaker S

μ )1(e ( )ke ( )Ke

System OverviewClick here for a demo



Multilingual speech synthesis
J• Japanese

• American English
• Chinese (Mandarin) (by ATR)( ) ( y )
• Brazilian Portuguese (by Nitech, and ＵＦＲＪ)
• European Portuguese (by Nitech, Univ of Porto, and UFRJ)
• SlovenianSlovenian 

(by Bostjan Vesnicer, University of Ljubljana, Slovenia)
• Swedish (by Anders Lundgren, KTH, Sweden)
• German (by University of Bonn and Nitech)• German (by University of Bonn, and Nitech)
• Korean (by Sang-Jin Kim, ETRI, Korea)
• Finish (by TKK, Finland)
• Baby English (by Univ of Edinburgh, UK)
• Polish, Slovak, Arabic, Farsi, Croatian, Polyglot, etc.



Singing voice synthesis [Oura; ’10] (1/2)
MusicXMLMusicXML

Trained HMMs Male:

Female:

Musical score Singing voice
database

Synthesized
singing voice

Male:

Female:

Ad t ti



Adaptation:
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1. Mathematical formulation
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Inclusion of all components

Problem of statistical parametric speech synthesis

 ˆ  WXwx ,,|Px̂
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Text processing PriorSpeech analysis



Relaxing approximations

Marginalizing model parameters
Variational Bayesian acoustic modeling for speech synthesis 
[N k k ’03][Nankaku;’03]

Marginalizing labels
J i t f t d / b k d d l t i i [O ’08]Joint front-end / back-end model training [Oura;’08]

Inclusion of waveform generation part
W f l l t ti ti l d l [M i ’10]Waveform-level statistical model [Maia;’10]





Summary

Statistical approach to speech synthesis

• Whole speech synthesis process is described in a 
statistical framework

• It gives a unified view and reveals what is correct 
and what is wrongg

• Importance of the database
Future workFuture work
• Still we have many problems should be solved:

• Speech waveform modeling• Speech waveform modeling
• Combination with text processing part, etc.





Final message

I h th i bl ?Is speech synthesis a messy problem?

Let us join speech synthesis research!



Thanks!
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