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Text-to-speech as sequence-to-sequence mapping

Automatic speech recognition (ASR)
Speech (real-valued time series)→ Text (discrete symbol sequence)

Statistical machine translation (SMT)
Text (discrete symbol sequence)→ Text (discrete symbol sequence)

Text-to-speech synthesis (TTS)
Text (discrete symbol sequence)→ Speech (real-valued time series)
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Speech production process
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Typical flow of TTS system

Sentence segmentaiton
Word segmentation
Text normalization

Part-of-speech tagging
Pronunciation

Prosody prediction
Waveform generation

TEXT

Text analysis

SYNTHESIZED
SEECH

Speech synthesisdiscrete ⇒ discrete

discrete ⇒ continuous

NLP

Speech

Frontend

Backend

This presentation mainly talks about backend
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Concatenative speech synthesis

All segments

Target cost Concatenation cost

• Concatenate actual small speech segments from database
→ Very high segmental naturalness
• Single segment per unit (e.g., diphone)→ diphone synthesis [1]
• Multiple segments per unit→ unit selection synthesis [2]
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Statistical parametric speech synthesis (SPSS) [4]

Speech Speech

Text Text

Feature
prediction

Vocoder
synthesis

Text
analysis

Vocoder
analysis

Text
analysis

Model
training

l

o

lΛ̂

Acoustic
model

ô

Training Synthesis

• Parametric representation rather than waveform
• Model relationship between linguistic & acoustic features
• Predict acoustic features then reconstruct waveform

SPSS can use any acoustic model, but HMM-based one is very popular
→ HMM-based speech synthesis [3]
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Statistical parametric speech synthesis (SPSS) [4]

Speech Speech

Text Text

Feature
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Vocoder
synthesis
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Training Synthesis

Pros
• Small footprint
• Flexibility to change voice characteristics
• Robust to data sparsity and noise/mistakes in data

Cons
• Segmental naturalness
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Major factors for naturalness degradation

Speech Speech

Text Text

Feature
prediction

Vocoder
synthesis

Text
analysis

Vocoder
analysis

Text
analysis

Model
training

l

o

lΛ̂

Acoustic
model

ô

Training Synthesis

• Vocoder analysis/synthesis
– How to parameterize speech?

• Acoustic model
– How to represent relationship between speech & text?

• Oversmoothing
– How to generate speech from model?
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Formulation of SPSS

Training
• Extract linguistic features l & acoustic features o
• Train acoustic model Λ given (o, l)

Λ̂ = arg max
Λ

p(o | l,Λ)

Synthesis
• Extract l from text to be synthesized
• Generate most probable o from Λ̂ then reconstruct waveform

ô = arg max
o

p(o | l, Λ̂)
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Formulation of SPSS

Training
• Extract linguistic features l & acoustic features o
• Train acoustic model Λ given (o, l)

Λ̂ = arg max
Λ

p(o | l,Λ)

Synthesis
• Extract l from text to be synthesized
• Generate most probable o from Λ̂ then reconstruct waveform

ô = arg max
o

p(o | l, Λ̂)
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Training – HMM-based acoustic modeling

q1
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q4

o4

l

l1 lN

o1 o2

o3 Too2 ... ... ... ...o4 o2

o6o5

...

...
: Discrete

: Continuous

p(o | l,Λ) =
∑

∀q
p(o | q,Λ)P (q | l,Λ) q: hidden states

=
∑

∀q

T∏

t=1

p(ot | qt,Λ)P (q | l,Λ) qt: hidden state at t

=
∑

∀q

T∏

t=1

N (ot;µqt ,Σqt)P (q | l,Λ)

ML estimation of HMM parameters→ Baum-Welch (EM) algorithm [5]
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Training – Linguistic features

Linguistic features: phonetic, grammatical, & prosodic features
• Phoneme

phoneme identity, position
• Syllable

length, accent, stress, tone, vowel, position
• Word

length, POS, grammar, prominence, emphasis, position, pitch accent
• Phrase

length, type, position, intonation
• Sentence

length, type, position
. . .
→ Impossible to have enough data to cover all combinations
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Training – ML decision tree-based state clustering [6]

L=voice ?

stress="0"? R=silence ?yes

yes yes

no

no no

g-e+sil/A=1/...gy-e+sil/A=0/...w-a+t/A=0/...

k-a+b/A=1/... t-e+n/A=0/...

 Leaf nodes 

yes no yes no

w-a+sil/A=0/... gy-a+pau/A=0/...

Synthesized
Gaussians 

R=silence ? L="gy" ?

t-e+n/A=0/...

...

...
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Training – Example
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Formulation of SPSS

Training
• Extract linguistic features l & acoustic features o
• Train acoustic model Λ given (o, l)

Λ̂ = arg max
Λ

p(o | l,Λ)

Synthesis
• Extract l from text to be synthesized
• Generate most probable o from Λ̂ then reconstruct waveform

ô = arg max
o

p(o | l, Λ̂)
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Synthesis – Predict most probable acoustic features

ô = arg max
o

p(o | l, Λ̂)

= arg max
o

∑

∀q
p(o, q | l, Λ̂)

≈ arg max
o

max
q

p(o, q | l, Λ̂)

= arg max
o

max
q

p(o | q, Λ̂)P (q | l, Λ̂)

≈ arg max
o

p(o | q̂, Λ̂) s.t. q̂ = arg max
q

P (q | l, Λ̂)

= arg max
o
N
(
o;µq̂,Σq̂

)

= µq̂

=
[
µ>q̂1 , . . . ,µ

>
q̂T

]>
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Synthesis – Most probable acoustic features given HMM

Variance Mean

ô→ step-wise→ discontinuity can be perceived

Heiga Zen Acoustic Modeling for Speech Synthesis June 3rd, 2016 18 of 67



Synthesis – Using dynamic feature constraints [7]
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Synthesis – Speech parameter generation algorithm [7]

ô = arg max
o

p(o | q̂, Λ̂) s.t. o = Wc

ĉ = arg max
c
N (Wc;µq̂,Σq̂)

= arg max
c

logN (Wc;µq̂,Σq̂)

∂

∂c
logN (Wc;µq̂,Σq̂) ∝W>Σ−1

q̂ Wc−W>Σ−1
q̂ µq̂

W>Σ−1
q̂ Wc = W>Σ−1

q̂ µq̂

where

µq =
[
µ>q1 ,µ

>
q2 , . . . ,µ

>
qT

]>

Σq = diag [Σq1 ,Σq2 , . . . ,ΣqT ]

Heiga Zen Acoustic Modeling for Speech Synthesis June 3rd, 2016 20 of 67



Synthesis – Speech parameter generation algorithm [7]
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Synthesis – Most probable acoustic features
under constraints between static & dynamic features
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HMM-based acoustic model – Limitations (1)
Stepwise statistics

q1

o1

q2

o2

q3

o3

q4

o4

l

Variance Mean

• Output probability only depends on the current state
• Within the same state, statistics are constant
→ Step-wise statistics
• Using dynamic feature constraints
→ Ad hoc & introduces inconsistency betw. training & synthesis [8]
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HMM-based acoustic model – Limitations (2)
Difficulty to integrate feature extraction & modeling

. . . . . .c1 c2 c3 c4 c5 cT. .

. . . . . .s1 s2 s3 s4 s5 sT
. .

Cepstra

Spectra

⇒ ⇒ ⇒ ⇒ ⇒ ⇒ ⇒ ⇒ dimensinality
reduction

• Spectra or waveforms are high-dimensional & highly correlated
• Hard to be modeled by HMMs with Gaussian + digonal covariance
→ Use low dimensional approximation (e.g., cepstra, LSPs)
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HMM-based acoustic model – Limitations (3)
Data fragmentation

yes noyes no

...

yes no

yes no yes no

• Trees split input into clusters & put representative distributions
→ Inefficient to represent dependency betw. ling. & acoust. feats.
• Minor features are never used (e.g., word-level emphasis [9])
→ Little or no effect
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Alternatives – Stepwise statistics

q1
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ARHMM
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c3

q4

c4

l

Trajectory HMM

• Autoregressive HMMs (ARHMMs) [10]
• Linear dynamical models (LDMs) [11, 12]
• Trajectory HMMs [8]
• · · ·

Most of them use clustering→ Data fragmentation
Often employ trees from HMM→ Sub-optimal
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Alternatives – Difficulty to integrate feature extraction

Spectrum
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q3

c3
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c4

l

s1 s2 s3 s4

Cepstrum (hidden)

• Statistical vocoder [13]
• Minimum generation error with log spectral distortion [14]
• Waveform-level model [15]
• Mel-cepstral analysis-integrated HMM [16]

Use clustering to build tying structure→ Data fragmentation
Often employ trees from HMM→ Sub-optimal
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Alternatives – Data fragmentation

⇒

Tree1 (8 classes) Tree2 (7 classes) Combined (17 classes)

• Factorized decision tree [9, 17]
• Product of experts [18]

Each tree/expert still has data fragmentation→ Data fragmentation
Fix other trees while building one tree [19, 20]→ Sub-optimal
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Linguistic→ Acoustic mapping

• Training
Learn relationship between linguistic & acoustic features

• Synthesis
Map linguistic features to acoustic ones

• Linguistic features used in SPSS
− Phoneme, syllable, word, phrase, utterance-level features
− Around 50 different types
− Sparse & correlated

Effective modeling is essential
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Decision tree-based acoustic model

HMM-based acoustic model & alternatives
→ Actually decision tree-based acoustic model

Statistics of acoustic features o

...

Linguistic
features l

yes no

yes no yes no

Regression tree: linguistic features→ Stats. of acoustic features

Replace the tree with a general-purpose regression model
→ Artificial neural network
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ANN-based acoustic model [21] – Overview

ht

ltFrame-level linguistic feature

otFrame-level acoustic feature

Input

Target

lt

o t o t+1o t−1

lt+1lt−1

ht = f (Whllt + bh) ôt = Wohht + bo

Λ̂ = arg min
Λ

∑

t

‖ot − ôt‖2 Λ = {Whl,Woh, bh, bo}

ôt ≈ E [ot | lt]→ Replace decision trees & Gaussian distributions
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ANN-based acoustic model [21] – Motivation (1)
Distributed representation [22, 23]

c1 c2

partition 2

partition 1
(c1,c2,c3)
=(1,0,1)

(c1,c2,c3)
=(1,1,1)

(c1,c2,c3)
=(0,1,0)

(c1,c2,c3)
=(0,0,1)

yes no

yes no yes no

yes noyes no

yes no

(c1,c2,c3)
=(0,0,0)

(c1,c2,c3)
=(1,1,0)

(c1,c2,c3)
=(1,0,0)

partition 3

c3

• Fragmented: n terminal nodes→ n classes (linear)
• Distributed: n binary units→ 2n classes (exponential)
• Minor features (e.g., word-level emphasis) can affect synthesis
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ANN-based acoustic model [21] – Motivation (2)
Integrate feature extraction [24, 25, 26]
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h11
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h14
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h31 h32 h33 h34

s1 s2 s3 s4

• Layered architecture with non-linear operations
• Can model high-dimensional/correlated linguistic/acoustic features
→ Feature extraction can be embedded in model itself
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ANN-based acoustic model [21] – Motivation (3)
Implicitly mimic layered hierarchical structure in speech production
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DNN-based speech synthesis [21] – Implementation
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DNN-based speech synthesis [21] – Example
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Natural speech DNN (smoothed)
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DNN-based speech synthesis [21] – Subjective eval.

Compared HMM- & DNN-based TTS w/ similar # of parameters
• US English, professional speaker, 30 hours of speech data
• Preference test
• 173 test sentences, 5 subjects per pair
• Up to 30 pairs per subject
• Crowd-sourced

Preference scores (%)
HMM DNN No pref. #layers × #units
15.8 38.5 45.7 4 × 256
16.1 27.2 56.7 4 × 512
12.7 36.6 50.7 4 × 1024
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Feedforward NN-based acoustic model – Limitation

ht

ltFrame-level linguistic feature

otFrame-level acoustic feature

Input

Target

lt

o t o t+1o t−1

lt+1lt−1

Each frame is mapped independently→ Smoothing is still essential

Preference scores (%)
DNN with dyn DNN without dyn No pref.

67.8 12.0 20.0

Recurrent connections→ Recurrent NN (RNN) [27]
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RNN-based acoustic model [28, 29]

Target o

Input l

Recurrent
connections

lt

o t o t+1o t−1

lt+1lt−1

ht = f (Whllt +Whhht−1 + bh) ôt = Wohht + bo

Λ̂ = arg min
Λ

∑

t

‖ot − ôt‖2 Λ = {Whl,Whh,Woh, bh, bo}

• DNN: ôt ≈ E [ot | lt]
• RNN: ôt ≈ E [ot | l1, . . . , lt]
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RNN-based acoustic model [28, 29]

Target o

Input l

Recurrent
connections

lt

o t o t+1o t−1

lt+1lt−1

• Only able to use previous contexts
→ Bidirectional RNN [27]: ôt ≈ E [ot | l1, . . . , lT ]

• Trouble accessing long-range contexts
− Information in hidden layers loops quickly decays over time
− Prone to being overwritten by new information from inputs
→ Long short-term memory (LSTM) [30]
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LSTM-RNN-based acoustic model [29]
Subjective preference test (same US English data)

DNN: 3 layers, 1024 units
LSTM: 1 layer, 256 LSTM units

DNN with dyn LSTM with dyn No pref.
18.4 34.9 47.6

LSTM with dyn LSTM without dyn No pref.
21.0 12.2 66.8

→ Smoothing was still effective
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Why?

ct

bi xt h t−

it

tanh

sigm

tanh

bc

xt

h t−

Input gate

Forget gate

Memory cell

bo xt h t−

ht

bf xt h t−

sigm

sigm
Block

Output gate

ft

ot

Gate output: 0 -- 1

Input gate == 1
→ Write memory

Forget gate == 0
→ Reset memory

Output gate == 1
→ Read memory

• Gates in LSTM units: 0/1 switch controlling information flow
• Can produce rapid change in outputs
→ Discontinuity

Heiga Zen Acoustic Modeling for Speech Synthesis June 3rd, 2016 43 of 67



How?

• Using loss function incorporating continuity
• Integrate smoothing→ Recurrent output layer [29]

ht = LSTM (lt) ôt = Wohht +Wooôt−1 + bo

Works pretty well

LSTM with dyn LSTM without dyn
(Feedforward) (Recurrent) No pref.

21.8 21.0 57.2

Having two smoothing togeter doesn’t work well→ Oversmoothing?

LSTM with dyn LSTM without dyn
(Recurrent) (Recurrent) No pref.

16.6 29.2 54.2
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Low-latency TTS by unidirectional LSTM-RNN [29]

HMM / DNN
• Smoothing by dyn. needs to solve set of T linear equations

W>Σ−1
q̂ Wc = W>Σ−1

q̂ µq̂ T : Utterance length

• Order of operations to determine the first frame c1 (latency)
− Cholesky decomposition [7]→ O(T )
− Recursive approximation [31]→ O(L) L : lookahead, 10 ∼ 30

Unidirectional LSTM with recurrent output layer [29]
• No smoothing required, fully time-synchronous w/o lookahead
• Order of latency→ O(1)
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Low-latency TTS by LSTM-RNN [29] – Implementation

h e l ou
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⇒
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Some comments

Is this new? . . . no
• Feedforward NN-based speech synthesis [32]
• RNN-based speech synthesis [33]

What’s the difference?
• More layers, data, computational resources
• Better learning algorithm
• Modern SPSS techniques
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Making LSTM-RNN-based TTS into production
Client-side (local) TTS for Android
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Network architecture

LSTMP

FF / ReLU

LSTMP

LSTMP

RNN / Linear

~ 400 sparse input

49 dense output

⇐ Embed to continuous space

⇐ Encourage smooth trajectory
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Further optimization

• Disk footprint
HMM→ 8-bit quantized [34]
RNN→ Float
→Weight quantization

• Computational cost at inference
HMM→ Traversing decision trees (state) + parameter generation
RNN→Matrix-Vector multiplication (frame)
→Multi-frame inference

• Robustness
HMM→ “Soft” alignments using the Baum-Welch algorithm
RNN→ Typically relies on fixed alignments [21]
→ ε-contaminated Gaussian loss function
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Weight quantization

8-bit quantization of ANN weights to reduce footprint [35]

Preference scores (%)
Language int8 float No pref.

English (GB) 13.0 12.2 74.8
English (NA) 8.0 10.0 82.0

French 4.7 3.8 91.5
German 12.5 8.8 78.7
Italian 12.0 9.8 78.2

Spanish (ES) 8.8 7.5 83.7

No degradation by weight quantization
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Multi-frame inference
Multi-frame inference
Bundle multiple targets to a single one [36]
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Multi-frame inference

4-frame inference w/ data augmentation

Preference scores (%)
Language 4-frame+ 1-frame No pref.

English (GB) 25.7 20.2 54.2
English (NA) 8.5 6.2 85.3

French 18.8 18.6 62.6
German 19.3 22.2 58.5
Italian 13.5 14.4 72.1

Spanish (ES) 12.8 17.0 70.3

No degradation by multi-frame inference
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ε-contaminated Gaussian loss
Use heavier-tailed distribution as loss

L(z;x,Λ) = − log {(1− ε)N (z; f(x;Λ),Σ) + εN (z; f(x;Λ), cΣ)}

 0

 0.4

-4  0  4

N(0,1)
N(0,10)

0.9*N(0,1)+0.1*N(0,10)

 0.2
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ε-contaminated Gaussian loss

Preference scores (%)
Language CG L2 No pref.

English (GB) 27.4 18.1 54.5
English (NA) 7.6 6.8 85.6

French 24.6 15.9 59.5
German 17.1 20.8 62.1
Italian 16.0 10.6 73.4

Spanish (ES) 16.0 13.4 70.6
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Comparison w/ HMM-based SPSS

• HMMs & LSTM-RNNs were quantized into 8-bit integers
• Same training data & text processing front-end
• Average disk footprint; HMM: 1,560KB LSTM-RNN: 454.5KB
• HMM: Time-recursive parameter generation [31] w/ 10-frame delay

Latency (ms) Total (ms)
Length LSTM HMM LSTM HMM

character 12.5 19.5 49.8 49.6
word 14.6 25.3 61.2 80.5

sentence 31.4 55.4 257.3 286.2
paragraph 64.1 117.7 2216.1 2400.8

Heiga Zen Acoustic Modeling for Speech Synthesis June 3rd, 2016 56 of 67



Comparison w/ HMM-based SPSS

Preference scores (%)
Language LSTM HMM No pref.

English (GB) 31.6 28.1 40.3
English (NA) 30.6 15.9 53.5

French 68.6 8.4 23.0
German 52.8 19.3 27.9
Italian 84.8 2.9 12.3

Spanish (ES) 72.6 10.6 16.8
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Comparison w/ concatenative TTS

Language LSTM Hybrid No
pref.

Arabic 13.9 22.1 64.0
Cantonese 25.1 7.3 67.6

Danish 37.0 49.1 13.9
Dutch 29.1 46.8 24.1

English (GB) 22.5 65.1 12.4
English (NA) 23.3 61.8 15.0

French 28.4 50.3 21.4
German 20.8 58.5 20.8
Greek 42.5 21.4 36.1
Hindi 42.5 36.4 21.1

Hungarian 56.5 30.3 13.3
Indonesian 18.9 57.8 23.4

Italian 28.1 49.0 22.9

Language LSTM Hybrid No
pref.

Japanese 47.4 28.8 23.9
Korean 40.6 25.8 33.5

Mandarin 48.6 17.5 33.9
Norwegian 54.1 30.8 15.1

Polish 14.6 75.3 10.1
Portuguese (BR) 31.4 37.8 30.9

Russian 26.7 49.1 24.3
Spanish (ES) 21.0 47.1 31.9
Spanish (NA) 22.5 55.6 21.9

Swedish 48.3 33.6 18.1
Thai 71.3 8.8 20.0

Turkish 61.3 20.8 18.0
Vietnamese 30.8 30.8 38.5
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Acoustic models for speech synthesis – Summary

• HMM
− Discontinuity due to step-wise statistics
− Difficult to integrate feature extraction
− Fragmented representation

• Feedforward NN
− Easier to integrate feature extraction
− Distributed representation
− Discontinuity due to frame-by-frame independent mapping

• (LSTM) RNN
− Smooth→ Low latency

Heiga Zen Acoustic Modeling for Speech Synthesis June 3rd, 2016 60 of 67



Acoustic models for speech synthesis – Future topics

• Visualization for debugging
− Concatenative→ Easy to debug
− HMM→ Hard
− ANN→ Harder

• More flexible voice-based user interface
− Concatenative→ Record all possibilities
− HMM→Weak/rare signals (input) are often ignored
− ANN→Weak/rare signals can contribute

• Fully integrate feature extraction
− Current: Linguistic features→ Acoustic features
− Goal: Character sequence→ Speech waveform
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Thanks!
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